Solve the recurrence $T(n) = 2T(n-1) + n$

\begin{align} T(n) & = 2 T(n-1) + n = 2(2T(n-2) + n-1) + n = 4T(n-2) + 2(n-1) + n\\ & = 8 T(n-3) + 4(n-2) + 2(n-1) + n = 2^k T(n-k) + \sum_{j=0}^{k-1} 2^j (n-j)\\ & = 2^{n-1} T(1) + \sum_{j=0}^{n-2}2^j (n-j) = 2^{n-1} + \sum_{j=0}^{n-2}2^j (n-j) \end{align} \begin{align} \sum_{j=0}^{n-2}2^j (n-j) & = n \sum_{j=0}^{n-2}2^j - \sum_{j=0}^{n-2} j2^j = n(2^{n-1}-1) - \dfrac{n \cdot 2^n - 3 \cdot 2^n + 4}2\\ & = n(2^{n-1}-1) - (n \cdot 2^{n-1} -3 \cdot 2^{n-1} + 2) = 3 \cdot 2^{n-1} -n - 2 \end{align} Hence, $$T(n) = 2^{n-1} + 3 \cdot 2^{n-1} -n - 2 = 2^{n+1} - n - 2$$

EDIT (Adding details)

First note that $\displaystyle \sum_{j=0}^{n-2}2^j$ is sum of a geometric progression and can be summed as shown below.$$\sum_{j=0}^{k} x^j = \dfrac{x^{k+1} -1}{x-1}$$ $\displaystyle \sum_{j=0}^{n-2} j2^j$ is a sum of the form $\displaystyle \sum_{j=0}^{k} jx^j$ $$\sum_{j=0}^{k} jx^j = x \sum_{j=0}^{k} jx^{j-1} = x \dfrac{d}{dx} \left( \sum_{j=0}^k x^j\right) = x \dfrac{d}{dx} \left( \dfrac{x^{k+1} - 1}{x-1}\right) = x \left( \dfrac{kx^{k+1} - (k+1) x^k +1}{(x-1)^2} \right)$$


Induction: For $n=1$, $T(1)=1=2^{1+1}-1-2$. Suppose $T(n-1)=2^n-n+1-2=2^n-n-1$. Then $T(n)=2T(n-1)+n=2^{n+1}-2n-2+n=2^{n+1}-n-2$ which completes the proof.


Hint: substitute $T(n)=G(n)-n-2$