Suppose $a_n>0$ and $\sum_{n=1}^{\infty}{a_n}$ diverges. Determine convergence of $\sum_{n=1}^{\infty}{\frac{a_n}{s_n^2}}$, where $s_n=\sum^n a_n$.

\begin{align} \sum_{n=p+1}^{m}{\frac{a_n}{s_n^2}}&=\sum_{n=p+1}^{m}{\frac{s_n-s_{n-1}}{s_n^2}} \\ &=\sum_{n=p+1}^{m}\frac{s_n-s_{n-1}}{s_{n-1}s_n}\frac{s_{n-1}}{s_n} \\ &=\sum_{n=p+1}^{m}\frac{s_{n-1}}{s_n}\left(\frac{1}{s_{n-1}}-\frac{1}{s_n}\right) \\ &< \sum_{n=p+1}^{m}\left(\frac{1}{s_{n-1}}-\frac{1}{s_n}\right) \hspace{8 mm} \left(0<\frac{s_{n-1}}{s_n}<1\operatorname{ and }\frac{1}{s_{n-1}}-\frac{1}{s_n}>0\right) \\ &=\frac{1}{s_{p}}-\frac{1}{s_m} \\ &<\frac{1}{s_{p}}\to0 \hspace{8 mm} \left(s_{p} \to\infty \operatorname{ as } p\to\infty\right) \end{align} So by Cauchy Criterion, $\sum \limits_{n=1}^{\infty}{\dfrac{a_n}{s_n^2}}$ converges.


Here's an idea: Suppose $f$ is positive and continuous on $[1,\infty).$ The integral analogue of our problem is: If $\int_1^\infty f = \infty,$ and $F(x) = \int_1^x f,$ then

$$\int_2^\infty \frac{f(x)}{(F(x))^2}\,dx < \infty.$$

This is simple to verify, since $f= F'.$ That strongly suggests $\sum (a_n/s_n^2) < \infty$ in the series case.