What is the difference between an Embedding Layer and a Dense Layer?

Mathematically, the difference is this:

  • An embedding layer performs select operation. In keras, this layer is equivalent to:

    K.gather(self.embeddings, inputs)      # just one matrix
    
  • A dense layer performs dot-product operation, plus an optional activation:

    outputs = matmul(inputs, self.kernel)  # a kernel matrix
    outputs = bias_add(outputs, self.bias) # a bias vector
    return self.activation(outputs)        # an activation function
    

You can emulate an embedding layer with fully-connected layer via one-hot encoding, but the whole point of dense embedding is to avoid one-hot representation. In NLP, the word vocabulary size can be of the order 100k (sometimes even a million). On top of that, it's often needed to process the sequences of words in a batch. Processing the batch of sequences of word indices would be much more efficient than the batch of sequences of one-hot vectors. In addition, gather operation itself is faster than matrix dot-product, both in forward and backward pass.


Here I want to improve the voted answer by providing more details:

When we use embedding layer, it is generally to reduce one-hot input vectors (sparse) to denser representations.

  1. Embedding layer is much like a table lookup. When the table is small, it is fast.

  2. When the table is large, table lookup is much slower. In practice, we would use dense layer as a dimension reducer to reduce the one-hot input instead of embedding layer in this case.


An embedding layer is faster, because it is essentially the equivalent of a dense layer that makes simplifying assumptions.

Imagine a word-to-embedding layer with these weights:

w = [[0.1, 0.2, 0.3, 0.4],
     [0.5, 0.6, 0.7, 0.8],
     [0.9, 0.0, 0.1, 0.2]]

A Dense layer will treat these like actual weights with which to perform matrix multiplication. An embedding layer will simply treat these weights as a list of vectors, each vector representing one word; the 0th word in the vocabulary is w[0], 1st is w[1], etc.


For an example, use the weights above and this sentence:

[0, 2, 1, 2]

A naive Dense-based net needs to convert that sentence to a 1-hot encoding

[[1, 0, 0],
 [0, 0, 1],
 [0, 1, 0],
 [0, 0, 1]]

then do a matrix multiplication

[[1 * 0.1 + 0 * 0.5 + 0 * 0.9, 1 * 0.2 + 0 * 0.6 + 0 * 0.0, 1 * 0.3 + 0 * 0.7 + 0 * 0.1, 1 * 0.4 + 0 * 0.8 + 0 * 0.2],
 [0 * 0.1 + 0 * 0.5 + 1 * 0.9, 0 * 0.2 + 0 * 0.6 + 1 * 0.0, 0 * 0.3 + 0 * 0.7 + 1 * 0.1, 0 * 0.4 + 0 * 0.8 + 1 * 0.2],
 [0 * 0.1 + 1 * 0.5 + 0 * 0.9, 0 * 0.2 + 1 * 0.6 + 0 * 0.0, 0 * 0.3 + 1 * 0.7 + 0 * 0.1, 0 * 0.4 + 1 * 0.8 + 0 * 0.2],
 [0 * 0.1 + 0 * 0.5 + 1 * 0.9, 0 * 0.2 + 0 * 0.6 + 1 * 0.0, 0 * 0.3 + 0 * 0.7 + 1 * 0.1, 0 * 0.4 + 0 * 0.8 + 1 * 0.2]]

=

[[0.1, 0.2, 0.3, 0.4],
 [0.9, 0.0, 0.1, 0.2],
 [0.5, 0.6, 0.7, 0.8],
 [0.9, 0.0, 0.1, 0.2]]

However, an Embedding layer simply looks at [0, 2, 1, 2] and takes the weights of the layer at indices zero, two, one, and two to immediately get

[w[0],
 w[2],
 w[1],
 w[2]]

=

[[0.1, 0.2, 0.3, 0.4],
 [0.9, 0.0, 0.1, 0.2],
 [0.5, 0.6, 0.7, 0.8],
 [0.9, 0.0, 0.1, 0.2]]

So it's the same result, just obtained in a hopefully faster way.


The Embedding layer does have limitations:

  • The input needs to be integers in [0, vocab_length).
  • No bias.
  • No activation.

However, none of those limitations should matter if you just want to convert an integer-encoded word into an embedding.