Yield in Mathematica
As I have previously stated, using Compile
will given faster code. Using an algorithm from fxtbook, the following code generates a next partition in lexicographic ordering:
PermutationIterator[f_, n_Integer?Positive, nextFunc_] :=
Module[{this = Range[n]},
While[this =!= {-1}, f[this]; this = nextFunc[n, this]];]
The following code assumes we run version 8:
ClearAll[cfNextPartition];
cfNextPartition[target : "MVM" | "C"] :=
cfNextPartition[target] =
Compile[{{n, _Integer}, {this, _Integer, 1}},
Module[{i = n, j = n, ni, next = this, r, s},
While[Part[next, --i] > Part[next, i + 1],
If[i == 1, i = 0; Break[]]];
If[i == 0, {-1}, ni = Part[next, i];
While[ni > Part[next, j], --j];
next[[i]] = Part[next, j]; next[[j]] = ni;
r = n; s = i + 1;
While[r > s, ni = Part[next, r]; next[[r]] = Part[next, s];
next[[s]] = ni; --r; ++s];
next
]], RuntimeOptions -> "Speed", CompilationTarget -> target
];
Then
In[75]:= Reap[PermutationIterator[Sow, 4, cfNextPartition["C"]]][[2,
1]] === Permutations[Range[4]]
Out[75]= True
This is clearly better in performance than the original gen
function.
In[83]:= gen[dummy, 9] // Timing
Out[83]= {26.067, Null}
In[84]:= PermutationIterator[dummy, 9, cfNextPartition["C"]] // Timing
Out[84]= {1.03, Null}
Using Mathematica's virtual machine is not much slower:
In[85]:= PermutationIterator[dummy, 9,
cfNextPartition["MVM"]] // Timing
Out[85]= {1.154, Null}
Of course this is nowhere near C code implementation, yet provides a substantial speed-up over pure top-level code.
You probably mean the question to be more general but the example of iterating over permutations as given on the page you link to happens to be built in to Mathematica:
Scan[Print, Permutations[{1, 2, 3}]]
The Print
there can be replaced with any function.