Insets around a clock

You can also arrange the lines on a circle like a pie chart:

ClearAll[llpOnCircle]
llpOnCircle[dt_, colors_, filling_: True, r1_: 1, r2_: 3/2, scale_: 1] := 
  MapIndexed[{Darker @ colors[[#2[[1]]]], 
     Line[(r1 + #[[2]] scale) {Cos[#[[1]]], Sin[#[[1]]]} & /@ #], 
     If[filling, {Opacity[.5], Lighter@colors[[#2[[1]]]] , 
       Polygon[Join[((r1 + #[[2]] scale) {Cos[#[[1]]], Sin[#[[1]]]} & /@ #), 
        (r2 {Cos[#[[1]]], Sin[#[[1]]]} & /@ Reverse[#])]]}, {}]} &, dt];

Examples:

We first pre-process the input data to partition and re-scale the columns:

columns = Range @ 36;
angles = Partition[Subdivide[0, 2 Pi, Length[columns]/2], 2, 1];
rescaled = AllData[[All, #]] & /@ Partition[columns, 2];
rescaled[[All, All, -1]] = Rescale[rescaled[[All, All, -1]]];
rescaled[[All, All, 1]] = MapIndexed[
   Rescale[#, MinMax[AllData[[All, 1]]], angles[[#2[[1]]]]] &, rescaled[[All, All, 1]]];

and combine the graphics primitives from OP's first code block

g1 = {Circle[{0, 0}, 2], Line[{{0, 0.8}, {0, 1.2}}], 
   Arrow[Reverse@Table[{Cos[t], Sin[t]}, {t, -Pi, Pi/2, 0.1}]], 
   Table[Line[{{2 Sin[θ], 2 Cos[θ]}, {(2 - 0.2) Sin[θ], (2 - 0.2) Cos[θ]}}], 
     {θ, 0, 2 π, π/9}], 
   Text[Style[0, Large], {0, 0.6}]};

with lines produces by llpOnCircle:

SeedRandom[777];
colors = RandomColor[18];
labels = RandomWord[18];
legend = SwatchLegend[colors, labels];


Legended[Graphics[{g1, llpOnCircle[rescaled, colors, True, 2.1, 2.6, .5]}, 
  ImageSize -> Large], legend]

enter image description here

Legended[Graphics[{g1, llpOnCircle[rescaled, colors, False, 2.1, 2.6, .5]}, 
  ImageSize -> Large], legend]

enter image description here

Change the fifth argument of llpOnCircle from 2.6 to 2 to get filling below the lines:

Legended[Graphics[{g1, llpOnCircle[rescaled, colors, True, 2.1, 2, .5]}, 
  ImageSize -> Large], legend]

enter image description here

Use colors = ColorData[97] /@ Range[Length@columns]; to get

enter image description here

Update: An alternative approach using SectorChart with a custom ChartElementFunction:

ClearAll[cEF]
cEF = {Line[MapThread[# {Cos@#2, Sin@#2} &, {#[[2, 1]] + #3[[1]], 
       Subdivide[#[[1, 1]], #[[1, 2]], Length[#3[[1]]] - 1]}]]} &;

yvals = rescaled[[All, All, -1]]; 
SectorChart[{1, Max@yvals} -> # & /@ yvals, SectorOrigin -> {Automatic, 3}, 
 Epilog -> Inset[Graphics @ g1, {0, 0}, Automatic, Scaled[1/2]], 
 ImageSize -> 600, ChartStyle -> (ColorData[97] /@ Range[18]), 
 ChartElementFunction -> cEF, 
 ChartLabels -> Placed[MapIndexed[Style[#, 14, ColorData[97][#2[[1]]]] &, labels], 
   "RadialOutside"]]

enter image description here

You can control the radial width of the sectors using a combination of values in the second part of the SectorOrigin option setting and in the last argument of Inset. You can use the option SectorSpacing to separate sectors:

SectorChart[{1, Max@yvals} -> # & /@ yvals, 
 SectorSpacing -> {.5, 0}, 
 SectorOrigin -> {Automatic, 4}, 
 Epilog -> Inset[Graphics@g1, {0, 0}, Automatic, Scaled[4/5]], 
 ImageSize -> 600, 
 ChartStyle -> (ColorData[97] /@ Range[18]), 
 ChartElementFunction -> cEF]

enter image description here

To add edges for a more clear separation of sectors, replace cEF with cEF2 where

ClearAll[cEF2]
cEF2 = {Line[MapThread[1.02 # {Cos@#2, Sin@#2} &, {#[[2, 1]] + #3[[1]], 
       Subdivide[#[[1, 1]], #[[1, 2]], Length[#3[[1]]] - 1]}]], 
    FaceForm[], 
    ChartElementData["Sector"][{#[[1]], {.95 #[[2, 1]], 1.02 #[[2, 2]]}}, ##2]} &;

enter image description here

Update 2: Play with options settings for SectorOrigin to control the starting positions and orientation of sectors. For example:

Row[SectorChart[{1, Max@yvals} -> # & /@ yvals, 
    SectorOrigin -> #, 
    Epilog -> Inset[Graphics@g1, {0, 0}, Automatic, Scaled[1/2]], 
    ImageSize -> 400, ChartStyle -> (ColorData[97] /@ Range[18]), 
    ChartElementFunction -> cEF2, 
    PlotLabel -> Row[{"SectorOrigin -> ", #}]] & /@ 
  {{{Pi/2, "Clockwise"}, 1.5}, {{Pi/2, "Counterclockwise"}, 2}}]

enter image description here


Clear["Global`*"]

AllData = Import["https://pastebin.com/raw/DsVfiMZN", "Table"];
datai = Table[
   data[20*i] = AllData[[All, 2*i + 1 ;; 2*i + 2]], {i, 0, 17}];

ploti = Table[
   p[20*i] = ListLinePlot[data[20*i],
     PlotRange -> {{0.5, 7.5}, {0, 0.6}},
     Axes -> False,
     PlotStyle -> Black,
     ImageSize -> 36],
   {i, 0, 17}];

Graphics[{
  Circle[{0, 0}, 2],
  Line[{{0, 0.8}, {0, 1.2}}],
  Arrow[Reverse@Table[{Cos[t], Sin[t]},
     {t, -π, π/2, 0.1}]],
  Table[Line[{{2 Sin[θ], 2 Cos[θ]},
     {(2 - 0.2) Sin[θ], (2 - 0.2) Cos[θ]}}],
   {θ, 0, 2 π, π/9}],
  Text[Style[0, Large], {0, 0.6}],
  Inset[p[20*#], 2.35*
      {Sin[20*#*Degree], Cos[20*#*Degree]}] & /@ 
    Range[0, 17]}]

enter image description here