Interface Segregation Principle- Program to an interface

Assume that you have one fat interface with many methods to be implemented.

Any class, that implements that fat interface has to provide implementation for all these methods. Some of the methods may not be applicable to that concrete class. But still it has to provide implementation in absence of interface segregation principle.

Let's have a look at example code in absence of Interface segregation.

interface Shape{
    public int getLength();
    public int getWidth();
    public int getRadius();
    public double getArea();
}

class Rectangle implements Shape{
    int length;
    int width;
    public Rectangle(int length, int width){
        this.length = length;
        this.width = width;
    }
    public int getLength(){
        return length;
    }
    public int getWidth(){
        return width;
    }
    public int getRadius(){
        // Not applicable
        return 0;
    }
    public double getArea(){
        return width * length;
    }
}
class Square implements Shape{
    int length;

    public Square(int length){
        this.length = length;
    }
    public int getLength(){
        return length;
    }
    public int getWidth(){
        // Not applicable
        return 0;
    }
    public int getRadius(){
        // Not applicable
        return 0;
    }
    public double getArea(){
        return length * length;
    }
}

class Circle implements Shape{
    int radius;
    public Circle(int radius){
        this.radius = radius;
    }
    public int getLength(){
        // Not applicable
        return 0;
    }
    public int getWidth(){
        // Not applicable
        return 0;
    }
    public int getRadius(){
        return radius;
    }
    public double getArea(){
        return 3.14* radius * radius;
    }
}

public class InterfaceNoSeggration{
    public static void main(String args[]){
        Rectangle r = new Rectangle(10,20);
        Square s = new Square(15);
        Circle c = new Circle(2);
        System.out.println("Rectangle area:"+r.getArea());
        System.out.println("Square area:"+s.getArea());
        System.out.println("Circle area:"+c.getArea());

    }
}

output:

java InterfaceNoSeggration
Rectangle area:200.0
Square area:225.0
Circle area:12.56

Notes:

  1. Shape is a general purpose fat interface, which contains methods required for all Shape implementations like Rectangle, Circle and Square. But only some methods are needed in respective Shape childs

     Rectangle : getLength(), getWidth(), getArea()
     Square    : getLength() and getArea()
     Circle    : getRadius() and getArea()
    
  2. In absence of segregation, all Shapes have implemented entire fat interface : Shape.

We can achieve same output with interface segregation principle if we change the code as follows.

interface Length{
    public int getLength();
}
interface Width{
    public int getWidth();
}
interface Radius{
    public int getRadius();
}
interface Area {
    public double getArea();
}


class Rectangle implements Length,Width,Area{
    int length;
    int width;
    public Rectangle(int length, int width){
        this.length = length;
        this.width = width;
    }
    public int getLength(){
        return length;
    }
    public int getWidth(){
        return width;
    }
    public int getRadius(){
        // Not applicable
        return 0;
    }
    public double getArea(){
        return width * length;
    }
}
class Square implements Length,Area{
    int length;

    public Square(int length){
        this.length = length;
    }
    public int getLength(){
        return length;
    }
    public int getWidth(){
        // Not applicable
        return 0;
    }
    public int getRadius(){
        // Not applicable
        return 0;
    }
    public double getArea(){
        return length * length;
    }
}

class Circle implements Radius,Area{
    int radius;
    public Circle(int radius){
        this.radius = radius;
    }
    public int getLength(){
        // Not applicable
        return 0;
    }
    public int getWidth(){
        // Not applicable
        return 0;
    }
    public int getRadius(){
        return radius;
    }
    public double getArea(){
        return 3.14* radius * radius;
    }
}

public class InterfaceSeggration{
    public static void main(String args[]){
        Rectangle r = new Rectangle(10,20);
        Square s = new Square(15);
        Circle c = new Circle(2);
        System.out.println("Rectangle area:"+r.getArea());
        System.out.println("Square area:"+s.getArea());
        System.out.println("Circle area:"+c.getArea());

    }
}

Notes:

Now individual Shapes like Rectangle, Square and Circle have implemented only required interfaces and got rid of un-used methods.


Robert Martin has a very good explanation of Interface segregation principle (ISP), in his book "UML for Java Programmers". Based on that, I don't think ISP is about an interface being "focused" on one logical, coherent group of things. Because, that goes without saying; or, at least it should go without saying. Each class, interface or abstract class should be designed that way.

So, what is ISP? Let me explain it with an example. Say, you have a class A and a class B, which is the client of class A. Suppose, class A has ten methods, of which only two are used by B. Now, does B need to know about all ten methods of A? Probably not - the principle of Information hiding. The more you expose, the more you create the chance for coupling. For that reason, you may insert an interface, call it C, between the two classes (segregation). That interface will only declare the two methods that are used by B, and B will depend on that Interface, instead of directly on A.

So now,

class A {
  method1()
  method2()
  // more methods
  method10()
}

class B {
   A a = new A()
}

will become

interface C {
  method1()
  method2()
}

class A implements C{
  method1()
  method2()
  // more methods
  method10()
}

class B {
  C c = new A()      
}   

This, prevents B from knowing more than it should.


ISP is focused on the idea of each interface representing one discrete and cohesive behavior.

That is, each logical group of things an object should do would map to a single specific interface. A class might want to do several things, but each thing would map to a specific interface representing that behavior. The idea is each interface is very focused.