Is a polynomial $f$ zero at $(a_1,\ldots,a_n)$ iff $f$ lies in the ideal $(X_1-a_1,\ldots,X_n-a_n)$?
Consider the case of $(a_1,\ldots,a_n)=(0,\ldots,0)$ first, where it's obvious. Then observe that $$f(a_1,\ldots,a_n)=0\iff g(0,\ldots,0)=0$$ and $$f\in (x_1-a_1,\ldots,x_n-a_n)\iff g\in (x_1,\ldots,x_n)$$ where $$g(x_1,\ldots,x_n)=f(x_1+a_1,\ldots,x_n+a_n)$$