Is there a built-in/easy LDU decomposition method in Numpy?
Scipy has an LU decomposition function: scipy.linalg.lu
. Note that this also introduces a permutation matrix P
into the mix. This answer gives a nice explanation of why this happens.
If you specifically need LDU, then you can just normalize the U
matrix to pull out D
.
Here's how you might do it:
>>> import numpy as np
>>> import scipy.linalg as la
>>> a = np.array([[2, 4, 5],
[1, 3, 2],
[4, 2, 1]])
>>> (P, L, U) = la.lu(a)
>>> P
array([[ 0., 1., 0.],
[ 0., 0., 1.],
[ 1., 0., 0.]])
>>> L
array([[ 1. , 0. , 0. ],
[ 0.5 , 1. , 0. ],
[ 0.25 , 0.83333333, 1. ]])
>>> U
array([[ 4. , 2. , 1. ],
[ 0. , 3. , 4.5],
[ 0. , 0. , -2. ]])
>>> D = np.diag(np.diag(U)) # D is just the diagonal of U
>>> U /= np.diag(U)[:, None] # Normalize rows of U
>>> P.dot(L.dot(D.dot(U))) # Check
array([[ 2., 4., 5.],
[ 1., 3., 2.],
[ 4., 2., 1.]])
Try this:
import numpy as np
A = np.array([[1,2,3,4],[1,2,3,4],[1,2,3,4],[1,2,3,4]])
U = np.triu(A,1)
L = np.tril(A,-1)
D = np.tril(np.triu(A))
print(A)
print(L)
print(D)
print(U)