Is there a numpy builtin to reject outliers from a list

This method is almost identical to yours, just more numpyst (also working on numpy arrays only):

def reject_outliers(data, m=2):
    return data[abs(data - np.mean(data)) < m * np.std(data)]

Something important when dealing with outliers is that one should try to use estimators as robust as possible. The mean of a distribution will be biased by outliers but e.g. the median will be much less.

Building on eumiro's answer:

def reject_outliers(data, m = 2.):
    d = np.abs(data - np.median(data))
    mdev = np.median(d)
    s = d/mdev if mdev else 0.
    return data[s<m]

Here I have replace the mean with the more robust median and the standard deviation with the median absolute distance to the median. I then scaled the distances by their (again) median value so that m is on a reasonable relative scale.

Note that for the data[s<m] syntax to work, data must be a numpy array.

Tags:

Python

Numpy