Keep which(..., arr.ind = TRUE) results that connect
This is a perfect problem for Rcpp
. Observe:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
IntegerMatrix findConnections(IntegerMatrix m) {
int i = 0, j = 0, k = 1, n = m.nrow();
// initialize matrix with same dimensions as m
IntegerMatrix myConnections(n, 2);
while (i < n) {
// Populate with "connected" row
myConnections(j,_) = m(i,_);
// Search for next connection
while (k < n && m(i, 1) != m(k, 0)) {k++;}
i = k;
j++;
}
// Subset matrix and output result
IntegerMatrix subMatrix(j, 2);
for (i = 0; i < j; i++) {subMatrix(i,_) = myConnections(i,_);}
return subMatrix;
}
findConnections(as.matrix(example3))
[,1] [,2]
[1,] 1 3
[2,] 3 5
[3,] 5 6
[4,] 6 8
Here are the benchmarks on example3
provided by the OP:
microbenchmark(get_path(example3),
foo(example3),
f(example3),
findConnections(as.matrix(example3)))
Unit: microseconds
expr min lq mean median uq max neval cld
get_path(example3) 3345.999 3519.0255 6361.76978 3714.014 3892.9930 202511.942 100 b
foo(example3) 215.514 239.3230 360.81086 257.180 278.3200 10256.384 100 a
f(example3) 936.355 1034.4645 1175.60323 1073.668 1142.4270 9676.755 100 a
findConnections(as.matrix(example3)) 52.135 60.3445 71.62075 67.528 80.4585 103.858 100 a
Here are some benchmarks on a larger example (didn't include get_graph
as it was taking a very long time):
set.seed(6221)
x <- as.matrix(cbind(x = rnorm(1000, 10, 3), y = rnorm(1000, 10, 3)))
value = 5
d <- as.matrix(dist(x[,c("x","y")]))
d[lower.tri(d)] <- 0
mtxLarge <- which(d > value, arr.ind = T)
mtxLargeFoo <- data.frame(mtxLarge, row.names = NULL) ## this is for the function foo
## as we don't want to include
## the time it takes to create
## a data.frame every time.
microbenchmark(foo(mtxLargeFoo),
f(mtxLarge),
findConnections(as.matrix(mtxLarge)), times = 10, unit = "relative")
Unit: relative
expr min lq mean median uq max neval cld
foo(mtxLargeFoo) 3168.479 3376.909 2660.377 3424.276 2319.434 1960.161 10 b
f(mtxLarge) 8307.009 8436.569 6420.919 8319.151 5184.557 4610.922 10 c
findConnections(as.matrix(mtxLarge)) 1.000 1.000 1.000 1.000 1.000 1.000 10 a
Test for equality:
a <- findConnections(as.matrix(mtxLarge))
b <- foo(mtxLargeFoo)
c <- f(mtxLarge)
sapply(1:2, function(x) identical(a[,x], b[,x], c[, x]))
[1] TRUE TRUE
UPDATE
If Rcpp
isn't your flavor, here is a Base R translation of the above code that is still faster than the other solutions:
findConnectionsBase <- function(m) {
n <- nrow(m)
myConnections <- matrix(integer(0), nrow = n, ncol = 2)
i <- j <- 1L
k <- 2L
while (i <= n) {
myConnections[j, ] <- m[i, ]
while (k <= n && m[i, 2] != m[k, 1]) {k <- k + 1L}
i <- k
j <- j + 1L
}
myConnections[!is.na(myConnections[,1]), ]
}
microbenchmark(get_path(example3),
foo(example3),
f(example3),
BaseR = findConnectionsBase(as.matrix(example3)),
Rcpp = findConnections(as.matrix(example3)))
Unit: microseconds
expr min lq mean median uq max neval cld
get_path(example3) 3128.844 3204.3765 6057.18995 3406.137 3849.274 188685.016 100 b
foo(example3) 239.734 251.4325 399.71418 267.648 301.309 12455.441 100 a
f(example3) 899.409 961.3950 1145.72695 1014.555 1127.237 9583.982 100 a
BaseR 79.638 89.2850 103.63571 97.905 111.657 212.230 100 a
Rcpp 48.850 55.8290 64.24807 61.781 69.170 123.151 100 a
And for the larger example:
microbenchmark(foo(mtxLargeFoo),
f(mtxLarge),
BaseR = findConnectionsBase(as.matrix(mtxLarge)),
Rcpp = findConnections(as.matrix(mtxLarge)), times = 10, unit = "relative")
Unit: relative
expr min lq mean median uq max neval cld
foo(mtxLargeFoo) 2651.9626 2555.0515 1606.2785 1703.0256 1711.4850 671.9115 10 c
f(mtxLarge) 6812.7195 6433.2009 3976.6135 4218.1703 4105.1138 1642.2768 10 d
BaseR 787.9947 733.4528 440.2043 478.9412 435.4744 167.7491 10 b
Rcpp 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 10 a
Here is an idea using igraph
package along with zoo
,
get_path <- function(df){
g1 <- graph_from_data_frame(df)
l1 <- all_simple_paths(g1, 1)
ind1 <- as.numeric(names(l1[[which.max(lengths(l1))]]))
final_df <- setNames(as.data.frame(rollapply(ind1, 2, c)),
c('row', 'col'))
return(final_df)
}
which gives the following,
library(igraph)
library(zoo)
get_path(example1) row col 1 1 4 2 4 5 get_path(example2) row col 1 2 3 2 3 5 3 5 7 get_path(example3) row col 1 1 3 2 3 5 3 5 6 4 6 8
FUNCTION
foo = function(df){
#Initiate with a value of 1 (first row)
inds = 1
while(TRUE){
# Look for the first index where the 'row' is equal to the value
# in 'col' at the index specified by the last value of 'inds'
temp = tail(inds, 1)
ind = temp + which(df[["row"]][(temp+1):NROW(df)] == df[["col"]][temp])[1]
#Append 'ind' to 'inds'
inds = c(inds, ind)
#Iterate until the end of the rows or when NA is encountered
if (ind == NROW(df) | is.na(ind)){
#Return the subset of the df with appropirate rows
return(df[inds[!is.na(inds)],])
}
}
}
USAGE
foo(example1)
# row col
#1 1 4
#3 4 5
foo(example2)
# row col
#1 2 3
#3 3 5
#7 5 7
foo(example3)
# row col
#1 1 3
#3 3 5
#5 5 6
#6 6 8
foo(data.frame(mtx, row.names = NULL))
# row col
#1 1 3
#5 3 4
#11 4 7