Limits: How to evaluate $\lim\limits_{x\rightarrow \infty}\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x$
Your limit can be rewritten as $$\lim_{x\rightarrow\infty}\left(\frac{\sqrt[n]{1+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}}-1}{1 \over x}\right)$$ Or equivalently, $$\lim_{y\rightarrow 0}\left(\frac{\sqrt[n]{1+{a_{n-1}}{y}+\cdots+{a_{0}}{y^{n}}}-1}{y}\right)$$ This, by the definition of derivative, is the derivative of the function $f(y) = {\sqrt[n]{1+{a_{n-1}}{y}+\cdots+{a_{0}}{y^{n}}}}$ at $y = 0$, which evaluates via the chain rule to ${a_{n-1} \over n}$.
Alternatively, rewrite this limit as
$$\lim_{x\rightarrow\infty}x\left(\sqrt[n]{1+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}}-1\right).$$
Consider the Taylor expansion around $0$ of $\sqrt[n]{1+z}$. We have
$$\sqrt[n]{1+z}=1+\frac{1}{n}z+O\left(z^{2}\right).$$ Setting $z=\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}$ we see that $z=O\left(\frac{1}{x}\right)$, and hence
$$\sqrt[n]{1+z}=1+\frac{1}{n}\left(\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}\right)+O\left(\frac{1}{x^{2}}\right)=1+\frac{a_{n-1}}{n}\frac{1}{x}+O\left(\frac{1}{x^{2}}\right).$$ Thus we have
$$x\left(\sqrt[n]{1+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}}-1\right)=\frac{a_{n-1}}{n}+O\left(\frac{1}{x}\right)$$
and we conclude
$$\lim_{x\rightarrow\infty}x\left(\sqrt[n]{1+\frac{a_{n-1}}{x}+\cdots+\frac{a_{0}}{x^{n}}}-1\right)=\frac{a_{n-1}}{n}.$$
Here is one method to evaluate
$$\lim_{x\rightarrow\infty}\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x.$$
Let $Q(x)=a_{n-1}x^{n-1}+\cdots+a_{0}$ for notational convenience, and notice $\frac{Q(x)}{x^{n-1}}\rightarrow a_{n-1}$ and $\frac{Q(x)}{x^{n}}\rightarrow0$ as $x\rightarrow\infty$. The crux is the factorization $$y^{n}-z^{n}=(y-z)\left(y^{n-1}+y^{n-2}z+\cdots+yz^{n-2}+z^{n-1}\right).$$
Setting $y=\sqrt[n]{x^{n}+Q(x)}$ and $z=x$ we find
$$\left(\sqrt[n]{x^{n}+Q(x)}-x\right)=\frac{Q(x)}{\left(\left(\sqrt[n]{x^{n}+Q(x)}\right)^{n-1}+\left(\sqrt[n]{x^{n}+Q(x)}\right)^{n-2}x+\cdots+x^{n-1}\right)}.$$
Dividing both numerator and denominator by $x^{n-1}$ yields
$$\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x=\frac{Q(x)/x^{n-1}}{\left(\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-1}+\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-2}+\cdots+1\right)}.$$
As $x\rightarrow\infty$, $\frac{Q(x)}{x^{n}}\rightarrow0$ so that each term in the denominator converges to $1$. Since there are $n$ terms we find $$\lim_{x\rightarrow\infty}\left(\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-1}+\left(\sqrt[n]{1+\frac{Q(x)}{x^{n}}}\right)^{n-2}+\cdots+1\right)=n$$ by the addition formula for limits. As the numerator converges to $a_{n-1}$ we see by the quotient property of limits that $$\lim_{x\rightarrow\infty}\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x=\frac{a_{n-1}}{n}$$ and the proof is finished.