Mean per group in a data.frame
Or use group_by
& summarise_at
from the dplyr
package:
library(dplyr)
d %>%
group_by(Name) %>%
summarise_at(vars(-Month), funs(mean(., na.rm=TRUE)))
# A tibble: 3 x 3
Name Rate1 Rate2
<fct> <dbl> <dbl>
1 Aira 16.3 47.0
2 Ben 31.3 50.3
3 Cat 44.7 54.0
See ?summarise_at
for the many ways to specify the variables to act on. Here, vars(-Month)
says all variables except Month
.
In more recent versions of tidyverse/dplyr
, using summarise(across(...))
is preferred to summarise_at
:
d %>%
group_by(Name) %>%
summarise(across(-Month, mean, na.rm = TRUE))
This type of operation is exactly what aggregate
was designed for:
d <- read.table(text=
'Name Month Rate1 Rate2
Aira 1 12 23
Aira 2 18 73
Aira 3 19 45
Ben 1 53 19
Ben 2 22 87
Ben 3 19 45
Cat 1 22 87
Cat 2 67 43
Cat 3 45 32', header=TRUE)
aggregate(d[, 3:4], list(d$Name), mean)
Group.1 Rate1 Rate2
1 Aira 16.33333 47.00000
2 Ben 31.33333 50.33333
3 Cat 44.66667 54.00000
Here we aggregate columns 3 and 4 of data.frame d
, grouping by d$Name
, and applying the mean
function.
Or, using a formula interface:
aggregate(. ~ Name, d[-2], mean)