Misconception about evaluating limits
hint
$ 1^\infty $ is an inderminate form.
It is equivalent to compute
$$\lim_{x\to 0^+}(\frac 13(3^x+8^x+9^x))^{\frac 1x}$$
or, after taking logarithm,
$$\lim_{x\to 0^+}\frac 1x\ln(1+\frac 13(3^x-1+8^x-1+9^x-1))$$
$$=\lim_{x\to 0}\frac{1}{3x}(3^x-1+8^x-1+9^x-1)$$
Now, use the fact that
$$\lim_{x\to 0^+}\frac{a^x-1}{x}=\ln(a)$$
The result you will find is $e^{\ln(2.3)}=6.$