Move column by name to front of table in pandas
We can use loc
to reorder by passing a list:
In [27]:
# get a list of columns
cols = list(df)
# move the column to head of list using index, pop and insert
cols.insert(0, cols.pop(cols.index('Mid')))
cols
Out[27]:
['Mid', 'Net', 'Upper', 'Lower', 'Zsore']
In [28]:
# use ix to reorder
df = df.loc[:, cols]
df
Out[28]:
Mid Net Upper Lower Zsore
Answer_option
More_than_once_a_day 2 0% 0.22% -0.12% 65
Once_a_day 3 0% 0.32% -0.19% 45
Several_times_a_week 4 2% 2.45% 1.10% 78
Once_a_week 6 1% 1.63% -0.40% 65
Another method is to take a reference to the column and reinsert it at the front:
In [39]:
mid = df['Mid']
df.drop(labels=['Mid'], axis=1,inplace = True)
df.insert(0, 'Mid', mid)
df
Out[39]:
Mid Net Upper Lower Zsore
Answer_option
More_than_once_a_day 2 0% 0.22% -0.12% 65
Once_a_day 3 0% 0.32% -0.19% 45
Several_times_a_week 4 2% 2.45% 1.10% 78
Once_a_week 6 1% 1.63% -0.40% 65
You can, with very early versions of Pandas, also use ix
to achieve the same results:
df = df.ix[:, cols]
But ix
was deprecated from pandas 0.20.0
onwards and was discontinued as of Pandas 1.0.
Maybe I'm missing something, but a lot of these answers seem overly complicated. You should be able to just set the columns within a single list:
Column to the front:
df = df[ ['Mid'] + [ col for col in df.columns if col != 'Mid' ] ]
Or if instead, you want to move it to the back:
df = df[ [ col for col in df.columns if col != 'Mid' ] + ['Mid'] ]
Or if you wanted to move more than one column:
cols_to_move = ['Mid', 'Zsore']
df = df[ cols_to_move + [ col for col in df.columns if col not in cols_to_move ] ]