NLTK Named Entity recognition to a Python list

You can also extract the label of each Name Entity in the text using this code:

import nltk
for sent in nltk.sent_tokenize(sentence):
   for chunk in nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(sent))):
      if hasattr(chunk, 'label'):
         print(chunk.label(), ' '.join(c[0] for c in chunk))

Output:

GPE WASHINGTON
GPE New York
PERSON Loretta E. Lynch
GPE Brooklyn

You can see Washington, New York and Brooklyn are GPE means geo-political entities

and Loretta E. Lynch is a PERSON


nltk.ne_chunk returns a nested nltk.tree.Tree object so you would have to traverse the Tree object to get to the NEs.

Take a look at Named Entity Recognition with Regular Expression: NLTK

>>> from nltk import ne_chunk, pos_tag, word_tokenize
>>> from nltk.tree import Tree
>>> 
>>> def get_continuous_chunks(text):
...     chunked = ne_chunk(pos_tag(word_tokenize(text)))
...     continuous_chunk = []
...     current_chunk = []
...     for i in chunked:
...             if type(i) == Tree:
...                     current_chunk.append(" ".join([token for token, pos in i.leaves()]))
...             if current_chunk:
...                     named_entity = " ".join(current_chunk)
...                     if named_entity not in continuous_chunk:
...                             continuous_chunk.append(named_entity)
...                             current_chunk = []
...             else:
...                     continue
...     return continuous_chunk
... 
>>> my_sent = "WASHINGTON -- In the wake of a string of abuses by New York police officers in the 1990s, Loretta E. Lynch, the top federal prosecutor in Brooklyn, spoke forcefully about the pain of a broken trust that African-Americans felt and said the responsibility for repairing generations of miscommunication and mistrust fell to law enforcement."
>>> get_continuous_chunks(my_sent)
['WASHINGTON', 'New York', 'Loretta E. Lynch', 'Brooklyn']


>>> my_sent = "How's the weather in New York and Brooklyn"
>>> get_continuous_chunks(my_sent)
['New York', 'Brooklyn']