numpy: applying argsort to an array
This is probably overkill, but this will work in the nd case:
import numpy as np
axis = 0
index = list(np.ix_(*[np.arange(i) for i in z2.shape]))
index[axis] = z2.argsort(axis)
z2[index]
# Or if you only need the 3d case you can use np.ogrid.
axis = 0
index = np.ogrid[:z2.shape[0], :z2.shape[1], :z2.shape[2]]
index[axis] = z2.argsort(axis)
z2[index]
You're lucky I just got my masters degree in numpyology.
>>> def apply_argsort(a, axis=-1):
... i = list(np.ogrid[[slice(x) for x in a.shape]])
... i[axis] = a.argsort(axis)
... return a[i]
...
>>> a = np.array([[1,2,3,4,5,6,7],[-6,-3,2,9,18,29,42]])
>>> apply_argsort(a,0)
array([[-6, -3, 2, 4, 5, 6, 7],
[ 1, 2, 3, 9, 18, 29, 42]])
For an explanation of what's going on, see my answer to this question.
Use np.take_along_axis
np.take_along_axis(z2, i, axis=1)
Out[31]:
array([[ 1, 2, 3, 4, 5, 6, 7],
[-6, -3, 2, 9, 18, 29, 42]])