numpy: applying argsort to an array

This is probably overkill, but this will work in the nd case:

import numpy as np
axis = 0
index = list(np.ix_(*[np.arange(i) for i in z2.shape]))
index[axis] = z2.argsort(axis)
z2[index]

# Or if you only need the 3d case you can use np.ogrid.

axis = 0
index = np.ogrid[:z2.shape[0], :z2.shape[1], :z2.shape[2]]
index[axis] = z2.argsort(axis)
z2[index]

You're lucky I just got my masters degree in numpyology.

>>> def apply_argsort(a, axis=-1):
...     i = list(np.ogrid[[slice(x) for x in a.shape]])
...     i[axis] = a.argsort(axis)
...     return a[i]
... 
>>> a = np.array([[1,2,3,4,5,6,7],[-6,-3,2,9,18,29,42]])
>>> apply_argsort(a,0)
array([[-6, -3,  2,  4,  5,  6,  7],
       [ 1,  2,  3,  9, 18, 29, 42]])

For an explanation of what's going on, see my answer to this question.


Use np.take_along_axis

np.take_along_axis(z2, i, axis=1)
Out[31]: 
array([[ 1,  2,  3,  4,  5,  6,  7],
       [-6, -3,  2,  9, 18, 29, 42]])