Pandas: Subtracting two date columns and the result being an integer

How about:

df_test['Difference'] = (df_test['First_Date'] - df_test['Second Date']).dt.days

This will return difference as int if there are no missing values(NaT) and float if there is.

Pandas have a rich documentation on Time series / date functionality and Time deltas


You can use datetime module to help here. Also, as a side note, a simple date subtraction should work as below:

import datetime as dt
import numpy as np
import pandas as pd

#Assume we have df_test:
In [222]: df_test
Out[222]: 
   first_date second_date
0  2016-01-31  2015-11-19
1  2016-02-29  2015-11-20
2  2016-03-31  2015-11-21
3  2016-04-30  2015-11-22
4  2016-05-31  2015-11-23
5  2016-06-30  2015-11-24
6         NaT  2015-11-25
7         NaT  2015-11-26
8  2016-01-31  2015-11-27
9         NaT  2015-11-28
10        NaT  2015-11-29
11        NaT  2015-11-30
12 2016-04-30  2015-12-01
13        NaT  2015-12-02
14        NaT  2015-12-03
15 2016-04-30  2015-12-04
16        NaT  2015-12-05
17        NaT  2015-12-06

In [223]: df_test['Difference'] = df_test['first_date'] - df_test['second_date'] 

In [224]: df_test
Out[224]: 
   first_date second_date  Difference
0  2016-01-31  2015-11-19     73 days
1  2016-02-29  2015-11-20    101 days
2  2016-03-31  2015-11-21    131 days
3  2016-04-30  2015-11-22    160 days
4  2016-05-31  2015-11-23    190 days
5  2016-06-30  2015-11-24    219 days
6         NaT  2015-11-25         NaT
7         NaT  2015-11-26         NaT
8  2016-01-31  2015-11-27     65 days
9         NaT  2015-11-28         NaT
10        NaT  2015-11-29         NaT
11        NaT  2015-11-30         NaT
12 2016-04-30  2015-12-01    151 days
13        NaT  2015-12-02         NaT
14        NaT  2015-12-03         NaT
15 2016-04-30  2015-12-04    148 days
16        NaT  2015-12-05         NaT
17        NaT  2015-12-06         NaT

Now, change type to datetime.timedelta, and then use the .days method on valid timedelta objects.

In [226]: df_test['Diffference'] = df_test['Difference'].astype(dt.timedelta).map(lambda x: np.nan if pd.isnull(x) else x.days)

In [227]: df_test
Out[227]: 
   first_date second_date  Difference  Diffference
0  2016-01-31  2015-11-19     73 days           73
1  2016-02-29  2015-11-20    101 days          101
2  2016-03-31  2015-11-21    131 days          131
3  2016-04-30  2015-11-22    160 days          160
4  2016-05-31  2015-11-23    190 days          190
5  2016-06-30  2015-11-24    219 days          219
6         NaT  2015-11-25         NaT          NaN
7         NaT  2015-11-26         NaT          NaN
8  2016-01-31  2015-11-27     65 days           65
9         NaT  2015-11-28         NaT          NaN
10        NaT  2015-11-29         NaT          NaN
11        NaT  2015-11-30         NaT          NaN
12 2016-04-30  2015-12-01    151 days          151
13        NaT  2015-12-02         NaT          NaN
14        NaT  2015-12-03         NaT          NaN
15 2016-04-30  2015-12-04    148 days          148
16        NaT  2015-12-05         NaT          NaN
17        NaT  2015-12-06         NaT          NaN

Hope that helps.


You can divide column of dtype timedelta by np.timedelta64(1, 'D'), but output is not int, but float, because NaN values:

df_test['Difference'] = df_test['Difference'] / np.timedelta64(1, 'D')
print (df_test)
  First_Date Second Date  Difference
0 2016-02-09  2015-11-19        82.0
1 2016-01-06  2015-11-30        37.0
2        NaT  2015-12-04         NaN
3 2016-01-06  2015-12-08        29.0
4        NaT  2015-12-09         NaN
5 2016-01-07  2015-12-11        27.0
6        NaT  2015-12-12         NaN
7        NaT  2015-12-14         NaN
8 2016-01-06  2015-12-14        23.0
9        NaT  2015-12-15         NaN

Frequency conversion.


I feel that the overall answer does not handle if the dates 'wrap' around a year. This would be useful in understanding proximity to a date being accurate by day of year. In order to do these row operations, I did the following. (I had this used in a business setting in renewing customer subscriptions).

def get_date_difference(row, x, y):
    try:
        # Calcuating the smallest date difference between the start and the close date
        # There's some tricky logic in here to calculate for determining date difference
        # the other way around (Dec -> Jan is 1 month rather than 11)

        sub_start_date = int(row[x].strftime('%j')) # day of year (1-366)
        close_date = int(row[y].strftime('%j')) # day of year (1-366)

        later_date_of_year = max(sub_start_date, close_date) 
        earlier_date_of_year = min(sub_start_date, close_date)
        days_diff = later_date_of_year - earlier_date_of_year

# Calculates the difference going across the next year (December -> Jan)
        days_diff_reversed = (365 - later_date_of_year) + earlier_date_of_year
        return min(days_diff, days_diff_reversed)

    except ValueError:
        return None

Then the function could be:

dfAC_Renew['date_difference'] = dfAC_Renew.apply(get_date_difference, x = 'customer_since_date', y = 'renewal_date', axis = 1)