Perfect square and perfect cube
sqrt(x)
, or in general, pow(x, 1./2)
or pow(x, 1./3)
For example:
int n = 9;
int a = (int) sqrt((double) n);
if(a * a == n || (a+1) * (a+1) == n) // in case of an off-by-one float error
cout << "It's a square!\n";
Edit: or in general:
bool is_nth_power(int a, int n) {
if(n <= 0)
return false;
if(a < 0 && n % 2 == 0)
return false;
a = abs(a);
int b = pow(a, 1. / n);
return pow((double) b, n) == a || pow((double) (b+1), n) == a;
}
No, but it's easy to write one:
bool is_perfect_square(int n) {
if (n < 0)
return false;
int root(round(sqrt(n)));
return n == root * root;
}
bool is_perfect_cube(int n) {
int root(round(cbrt(n)));
return n == root * root * root;
}
No, there are no standard c or c++ functions to check whether an integer is a perfect square or a perfect cube.
If you want it to be fast and avoid using the float/double routines mentioned in most of the answers, then code a binary search using only integers. If you can find an n with n^2 < m < (n+1)^2, then m is not a perfect square. If m is a perfect square, then you'll find an n with n^2=m. The problem is discussed here
Try this:
#include<math.h>
int isperfect(long n)
{
double xp=sqrt((double)n);
if(n==(xp*xp))
return 1;
else
return 0;
}