Polynomial $p(x) = 0$ for all $x$ implies coefficients of polynomial are zero

HINT $\ $ A nonzero polynomial over a field (or domain) has no more roots than its degree, as is easily proved by induction and the Factor Theorem. In fact if every natural was a root then the polynomial would be divisible by $\rm\:(x-1)\:(x-2)\:\cdots\:(x-n)\:$ for all $\rm\:n\in \mathbb N\:,\:$ which yields a contradiction for $\rm\:n\:$ greater than the degree of the polynomial.

Note that the proof of said statement depends crucially on the hypothesis that coefficient ring is an integral domain, i.e. a ring satisfying $\rm\:ab = 0\iff a=0\ \ or\ \ b=0\:.\:$ Over non-domains such as the integers modulo $\rm\:m\:$ not prime, polynomials can have more roots than their degree. In fact if this is true then one can use such roots to factor $\rm\:m\:,\:$ see here.


Note that $p(x)=0$ implies derivatives of all orders are also $0$. Let $x=0$ into $p(x) = b_0 + b_1 x + \cdots + b_n x^n$ to obtain $b_0 = 0$.

Now differentiate both sides: $p'(x) = b_1 + 2b_2 x + 3b_3 x^2 + \cdots + nb_n x^{n-1} $. Let $x=0$ again, and we get that $b_1=0$.

If we continue to differentiate and substitution $x=0$ we will get that $b_k=0$ for $k=0,1,2,\cdots, n$. This idea can easily be made into a rigorous induction proof.

A nice corollary of this result is that two polynomials are equal if and only if they have the same degree and coefficients.


If you are willing to accept $\displaystyle \lim_{x \rightarrow \infty}\frac{1}{x^{m}}=0$ and $\displaystyle \lim_{x \rightarrow \infty}x^m=\infty$ for all $m>0$, then you can argue as follows. Suppose you have a polynomial $f(x)=b_nx^n+ \ldots b_0$ with $b_n \neq 0$ and $n\geq 1$, then $$\lim_{x\rightarrow \infty}f(x)=\lim_{x \rightarrow \infty} x^n(b_n+ \ldots \frac{a_0}{x^n})=\lim_{x \rightarrow \infty} x^nb_n=\infty.$$

Since the constant function $0$ does not have this property, it cannot be equal to a polynomial with degree greater or equal to $1$.