Prime factorization - list
This is a comprehension based solution, it might be the closest you can get to a recursive solution in Python while being possible to use for large numbers.
You can get proper divisors with one line:
divisors = [ d for d in xrange(2,int(math.sqrt(n))) if n % d == 0 ]
then we can test for a number in divisors to be prime:
def isprime(d): return all( d % od != 0 for od in divisors if od != d )
which tests that no other divisors divides d.
Then we can filter prime divisors:
prime_divisors = [ d for d in divisors if isprime(d) ]
Of course, it can be combined in a single function:
def primes(n):
divisors = [ d for d in range(2,n//2+1) if n % d == 0 ]
return [ d for d in divisors if \
all( d % od != 0 for od in divisors if od != d ) ]
Here, the \ is there to break the line without messing with Python indentation.
A simple trial division:
def primes(n):
primfac = []
d = 2
while d*d <= n:
while (n % d) == 0:
primfac.append(d) # supposing you want multiple factors repeated
n //= d
d += 1
if n > 1:
primfac.append(n)
return primfac
with O(sqrt(n))
complexity (worst case). You can easily improve it by special-casing 2 and looping only over odd d
(or special-casing more small primes and looping over fewer possible divisors).
The primefac module does factorizations with all the fancy techniques mathematicians have developed over the centuries:
#!python
import primefac
import sys
n = int( sys.argv[1] )
factors = list( primefac.primefac(n) )
print '\n'.join(map(str, factors))