Programming a recursive formula into Mathematica and find the nth position in the sequence

Try RSolve:

ClearAll[rs]
rs[α_, β_, γ_] := p /. 
  RSolve[{p[n] == α p[n - 1] + p[n - 2], p[1] == β, p[2] == γ}, p, n][[1]]

N @ rs[2, 1, 2][5]

29.

Alternatively, RecurrenceTable:

ClearAll[rt]
rt[α_, β_, γ_][k_] := Last @ 
   RecurrenceTable[{p[n] == α p[n - 1] + p[n - 2], p[1] == β, p[2] == γ}, p,  {n, k}];

rt[2, 1, 2][5]

29


Since you have a three-term linear difference equation, it is very straightforward to use LinearRecurrence[] directly:

With[{α = 2, β = 1, γ = 2}, 
     LinearRecurrence[{α, 1}, {β, γ}, {5}][[1]]]
   29

A more manual, but equivalent, method involves repeatedly multiplying the (Frobenius) companion matrix of your difference equation's characteristic polynomial with a vector containing your initial conditions. MatrixPower[]'s three-argument action form (which directly generates $\mathbf A^n\mathbf v$ as opposed to separately generating $\mathbf A^n$ before multiplying with $\mathbf v$) is particularly convenient for this:

With[{α = 2, β = 1, γ = 2},
     MatrixPower[{{α, 1}, {1, 0}}, 5 - 2, {γ, β}][[1]]]
   29

RSolveValue gives an explicit expression:

RSolveValue[{P[n] == α P[n - 1] + P[n - 2], P[1] == β, P[2] == γ}, P[n], n] // FullSimplify

$$ \frac{2^{-n-1} \left(\left(\alpha -\sqrt{\alpha ^2+4}\right)^n \left(\alpha \gamma -\left(\alpha ^2+2\right) \beta \right)+\left(\sqrt{\alpha ^2+4}+\alpha \right)^n \left(\left(\alpha ^2+2\right) \beta -\alpha \gamma \right)-\alpha \sqrt{\alpha ^2+4} \beta \left(\alpha -\sqrt{\alpha ^2+4}\right)^n-\alpha \sqrt{\alpha ^2+4} \beta \left(\sqrt{\alpha ^2+4}+\alpha \right)^n+\sqrt{\alpha ^2+4} \gamma \left(\alpha -\sqrt{\alpha ^2+4}\right)^n+\sqrt{\alpha ^2+4} \gamma \left(\sqrt{\alpha ^2+4}+\alpha \right)^n\right)}{\sqrt{\alpha ^2+4}} $$

For your particular parameters:

With[{α = 2, β = 1, γ = 2},
  RSolveValue[{P[n] == α P[n - 1] + P[n - 2], P[1] == β, P[2] == γ}, P[5], n]]
(*    29    *)