Prove this trigonometric inequality about the angles of $\triangle ABC$
Let $a=y+z$, $b=x+z$ and $c=x+y$.
Hence, $x$, $y$ and $z$ are positives and we need to prove that $$\sum_{cyc}\sqrt{\frac{1+\frac{b^2+c^2-a^2}{2bc}}{2}}\geq$$ $$\geq\frac{\sqrt{3}}{2}\sum_{cyc}\left(\sqrt{\frac{1+\frac{b^2+c^2-a^2}{2bc}}{2}\cdot\frac{1+\frac{a^2+c^2-b^2}{2ac}}{2}}+\sqrt{\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}\cdot\frac{1-\frac{a^2+c^2-b^2}{2ac}}{2}}\right)$$ or $$\sum_{cyc}\sqrt{\frac{(a+b+c)(b+c-a)}{bc}}\geq$$ $$\geq\frac{\sqrt3}{4c\sqrt{ab}}\sum_{cyc}(a+b+c+a+b-c)\sqrt{(b+c-a)(a+c-b)}$$ or $$2\sum_{cyc}\sqrt{c^2ab(a+b+c)(a+b-c)}\geq\sqrt3\sum_{cyc}(a+b)\sqrt{ab(a+c-b)(b+c-a)}$$ or $$2\sum_{cyc}\sqrt{(x+y)^2(x+z)(y+z)(x+y+z)z}\geq\sqrt3\sum_{cyc}(x+y+2z)\sqrt{xy(x+z)(y+z)}$$ or $$\frac{4}{\sqrt3}\sqrt{(x+y+z)\prod_{cyc}(x+y)}\sum_{cyc}\sqrt{z(x+y)}+$$ $$+\sum_{cyc}(x+y+2z)\left(x(y+z)+y(x+z)-2\sqrt{xy(x+z)(y+z)}\right)\geq$$ $$\geq\sum_{cyc}(x+y+2z)(x(y+z)+y(x+z))$$ or $$\frac{4}{\sqrt3}\sqrt{(x+y+z)\prod_{cyc}(x+y)}\sum_{cyc}\sqrt{z(x+y)}+$$ $$+\sum_{cyc}(x+y+2z)\left(\sqrt{x(y+z)}-\sqrt{y(x+z)}\right)^2\geq$$ $$\geq\sum_{cyc}(5x^2y+5x^2z+6xyz)$$ or $$\frac{4}{\sqrt3}\sqrt{(x+y+z)\prod_{cyc}(x+y)}\sum_{cyc}\sqrt{z(x+y)}+$$ $$+\sum_{cyc}\frac{(x+y+2z)z^2(x-y)^2}{\left(\sqrt{x(y+z)}+\sqrt{y(x+z)}\right)^2}\geq\sum_{cyc}(5x^2y+5x^2z+6xyz).$$ Now, since by Holder $$\sum_{cyc}\sqrt{z(x+y)}=\sqrt{\frac{\left(\sum\limits_{cyc}\sqrt{z(x+y)}\right)^2\sum\limits_{cyc}z^2(x+y)^2}{\sum\limits_{cyc}z^2(x+y)^2}}\geq$$ $$\geq\sqrt{\frac{8(xy+xz+yz)^3}{2\sum\limits_{cyc}(x^2y^2+x^2yz)}}=2\sqrt{\frac{(xy+xz+yz)^3}{\sum\limits_{cyc}(x^2y^2+x^2yz)}}$$ and by C-S $$\left(\sqrt{x(y+z)}+\sqrt{y(x+z)}\right)^2\leq(1+1)(x(y+z)+y(x+z))=2(2xy+xz+yz),$$ it remains to prove that $$\frac{8}{\sqrt3}\sqrt{\frac{(x+y+z)\prod\limits_{cyc}(x+y)(xy+xz+yz)^3}{\sum\limits_{cyc}(x^2y^2+x^2yz)}}+\frac{1}{2}\sum_{cyc}\frac{(x-y)^2z^2(x+y+2z)}{2xy+xz+yz}\geq$$ $$\geq\sum_{cyc}(5x^2y+5x^2z+6xyz).$$ We'll prove that $$\sum_{cyc}\frac{(x-y)^2z^2(x+y+2z)}{2xy+xz+yz}\geq\frac{2(x+y+z)\sum\limits_{cyc}z^2(x-y)^2}{3(xy+xz+yz)}.$$ Indeed, let $x\geq y\geq z$.
Hence, $$\sum_{cyc}\frac{(x-y)^2z^2(x+y+2z)}{2xy+xz+yz}-\frac{2(x+y+z)\sum\limits_{cyc}z^2(x-y)^2}{3(xy+xz+yz)}=$$ $$=\frac{\sum\limits_{cyc}z^2(x-y)^2(3(x+y+2z)(xy+xz+yz)-2(x+y+z)(2xy+xz+yz))}{3(2xy+xz+yz)(xy+xz+yz)}=$$ $$=\frac{\sum\limits_{cyc}z^2(x-y)^2(4z^2x+4z^2y+x^2z+y^2z+4xyz-x^2y-y^2x)}{3(2xy+xz+yz)(xy+xz+yz)}\geq$$ $$\geq\frac{\sum\limits_{cyc}z^2(x-y)^2(z^2x+z^2y+x^2z+y^2z-x^2y-y^2x)}{3(2xy+xz+yz)(xy+xz+yz)}\geq$$ $$\geq\frac{z^2(x-y)^2(z^2x+z^2y+x^2z+y^2z-x^2y-y^2x)}{(2xy+xz+yz)(xy+xz+yz)}+$$ $$+\frac{y^2(x-z)^2(y^2x+y^2z+x^2y+z^2y-x^2z-z^2x)}{3(2xz+xy+yz)(xy+xz+yz)}\geq$$ $$\geq\frac{z^2(x-y)^2(z^2x+x^2z-x^2y-y^2x)}{3(2xy+xz+yz)(xy+xz+yz)}+$$ $$+\frac{y^2(x-y)^2(y^2x+x^2y-x^2z-z^2x)}{3(2xz+xy+yz)(xy+xz+yz)}=$$ $$=\frac{x(x+y+z)(x-y)^2(y-z)}{3(xy+xz+yz)}\left(\frac{y^2}{2xz+xy+yz}-\frac{z^2}{2xy+xz+yz}\right)\geq0.$$ Id est, it's enough to prove that $$\frac{8}{\sqrt3}\sqrt{\frac{(x+y+z)\prod\limits_{cyc}(x+y)(xy+xz+yz)^3}{\sum\limits_{cyc}(x^2y^2+x^2yz)}}+\frac{(x+y+z)\sum\limits_{cyc}z^2(x-y)^2}{3(xy+xz+yz)}\geq$$ $$\geq\sum_{cyc}(5x^2y+5x^2z+6xyz).$$ Now, let $x+y+z=3u$, $xy+xz+yz=3v^2$, where $v>0$, and $xyz=w^3$.
Hence, we need to prove that $$\frac{8}{\sqrt3}\sqrt{\frac{(x+y+z)\prod\limits_{cyc}(x+y)(xy+xz+yz)^3}{\sum\limits_{cyc}(x^2y^2+x^2yz)}}+\frac{2(x+y+z)\sum\limits_{cyc}(x^2y^2-x^2yz)}{3(xy+xz+yz)}\geq$$ $$\geq\sum_{cyc}(5x^2y+5x^2z+6xyz)$$ or $$\frac{8}{\sqrt3}\sqrt{\frac{3u(9uv^2-w^3)\cdot27v^6}{9v^4-6uw^3+3uw^3}}+\frac{2\cdot3u(9v^4-9uw^3)}{9v^2}\geq5(9uv^2-3w^3)+18w^3$$ or $$8\sqrt{\frac{uv^6(9uv^2-w^3)}{3v^4-uw^3}}\geq\frac{9uv^4+6u^2w^3+v^2w^3}{v^2}$$ or $f(w^3)\geq0$, where $$f(w^3)=333u^2v^{12}-243u^3v^8w^3-118uv^{10}w^3-3v^8w^6-18u^2v^6w^6+$$ $$+36u^5w^9+12u^3v^2w^9+uv^4w^9.$$ We see that $$f'(w^3)=-243u^3v^8-118uv^{10}-6v^8w^3-36u^2v^6w^3+108u^5w^6+36u^3v^2w^6+3uv^4w^6\leq0$$ because $u\geq v\geq w$ and $v^4\geq uw^3$, which says that it's enough to prove $f(w^3)\geq0$ for a maximal value of $w^3$,
which happens for equality case of two variables.
Since $f(w^3)\geq0$ is homogeneous, we can assume $y=z=1$, which gives $$\frac{8}{\sqrt3}\sqrt{\frac{2(x+2)(x+1)^2(2x+1)^3}{3x^2+2x+1}}+\frac{2(x+2)(x-1)^2}{3(2x+1)}\geq10x^2+28x+10$$ or $$(x-1)^2(549x^6+2158x^5+2749x^4+1588x^3+551x^2+158x+23)\geq0.$$ Done!