Proving $|a+b|\le |a|+|b|$ from $-|a|\le a \le |a|$
Adding
$$-|a|\le a\le |a| $$ and
$$-|b|\le b\le |b|.$$
you get
$$-(|a|+|b|)\le a+b\le|a|+ |b|,$$
which is
$$-(a+b)\le|a|+|b|\land a+b\le|a|+|b|$$ or $$|a+b|\le|a|+|b|.$$
Adding
$$-|a|\le a\le |a| $$ and
$$-|b|\le b\le |b|.$$
you get
$$-(|a|+|b|)\le a+b\le|a|+ |b|,$$
which is
$$-(a+b)\le|a|+|b|\land a+b\le|a|+|b|$$ or $$|a+b|\le|a|+|b|.$$