Proving that $\sum_{k=0}^{n}\frac{(-1)^k}{{n\choose k}}=[1+(-1)^n] \frac{n+1}{n+2}.$
A telescoping approach:
We obtain \begin{align*} \color{blue}{\sum_{k=0}^n\frac{(-1)^k}{\binom{n}{k}}} &=\sum_{k=0}^n(-1)^k\frac{k!(n-k)!}{n!}\\ &=\sum_{k=0}^n(-1)^k\frac{k!(n-k)!}{n!}\cdot\frac{(n-(k-1))+(k+1)}{n+2}\\ &=\frac{n+1}{n+2}\sum_{k=0}^n(-1)^k\frac{k!(n-(k-1))!+(k+1)!(n-k)!}{(n+1)!}\\ &=\frac{n+1}{n+2}\sum_{k=0}^n\left((-1)^k\frac{1}{\binom{n+1}{k}}-(-1)^{k+1}\frac{1}{\binom{n+1}{k+1}}\right)\\ &\,\,\color{blue}{=\frac{n+1}{n+2}\left(1+(-1)^n\right)} \end{align*}
and the claim follows.
The general formula is:
$$\sum\limits_{k=0}^n\frac{(-1)^k}{\binom x k} = \left(1+\frac{(-1)^n}{\binom {x+1} {n+1}}\right)\frac{x+1}{x+2}$$
Value range: $\enspace n\in\mathbb{N}_0~,~~ x\in\mathbb{C}\setminus\{n-k|k\in\mathbb{N}\}$
The proof by induction with respect to $~n~$ is based on the following equation: $$\frac{1}{\binom x {n+1}}\frac{x+2}{x+1} = \frac{1}{\binom {x+1} {n+1}} + \frac{1}{\binom {x+1} {n+2}}$$
I think that the intuition about your result can be the following:
$f(n,k):=\int_0^1 x^k(1-x)^{n-k}>0$
and you can observe that
$1=1^n=((1-x)+x)^n=\sum_{k=0}^n\binom{n}{k}(1-x)^{n-k}x^k$
so if you integrate the two members with respect to $x$ you get that
$\int_0^11dx=1=$
$\int_0^1 (\sum_{k=0}^n\binom{n}{k}(1-x)^{n-k}x^k)dx=$
$=\sum_{k=0}^n\binom{n}{k}\int_0^1x^n(1-x)^{n-k}dx$
so
$1=\sum_{k=0}^n\binom{n}{k}f(n,k)$
and you can observe that the identity is satisfied when
$f(n,k)=\frac{1}{\binom{n}{k}}\frac{1}{n+1}$
So we want prove by induction on $k>1$ for all fixed $n\geq k$ that $f(n,k)=\frac{1}{\binom{n}{k}}\frac{1}{n+1}$
For $k=0$ you have that
$f(n,0)=\int_0^1x^0(1-x)^{n-0}dx=-\frac{1}{n+1}[(1-x)^{n+1}]|_0^1=\frac{1}{n+1}$
Now we can hypothesize that the sentence is true for some $k-1$ and we want prove that it is true for $k$:
$f(n,k)=\int_0^1x^k(1-x)^{n-k}dx=$
$-\frac{1}{n-k+1}\int_0^1x^kD((1-x)^{n-k+1})dx=$
$=\frac{1}{n-k+1}k\int_0^1x^{k-1}(1-x)^{n-(k-1)}dx=$
$=\frac{k}{n-k+1}f(n,k-1)=$
$\frac{1}{\binom{n}{k-1}}\frac{1}{n+1} \frac{k}{n-k+1 }=$
$=\frac{(k-1)!k(n-(k-1))!}{n!}\frac{1}{(n+1)(n-(k-1))}=$
$= \frac{1}{\binom{n}{k}}\frac{1}{n+1}$