Python best practice in terms of logging
Best practice is to follow Python's rules for software (de)composition - the module is the unit of Python software, not the class. Hence, the recommended approach is to use
logger = logging.getLogger(__name__)
in each module, and to configure logging (using basicConfig()
or dictConfig()
) from the main script.
Loggers are singletons - there is no point in passing them around or storing them in instances of your classes.
Use JSON or YAML logging configuration - After Python 2.7, you can load logging configuration from a dict. It means you can load the logging configuration from a JSON or YAML file.
Yaml Example -
version: 1
disable_existing_loggers: False
formatters:
simple:
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
handlers:
console:
class: logging.StreamHandler
level: DEBUG
formatter: simple
stream: ext://sys.stdout
info_file_handler:
class: logging.handlers.RotatingFileHandler
level: INFO
formatter: simple
filename: info.log
maxBytes: 10485760 # 10MB
backupCount: 20
encoding: utf8
error_file_handler:
class: logging.handlers.RotatingFileHandler
level: ERROR
formatter: simple
filename: errors.log
maxBytes: 10485760 # 10MB
backupCount: 20
encoding: utf8
loggers:
my_module:
level: ERROR
handlers: [console]
propagate: no
root:
level: INFO
handlers: [console, info_file_handler, error_file_handler]
Ref - Good-logging-practice-in-python