Seaborn: annotate the linear regression equation
You can use coefficients of linear fit to make a legend like in this example:
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
tips = sns.load_dataset("tips")
# get coeffs of linear fit
slope, intercept, r_value, p_value, std_err = stats.linregress(tips['total_bill'],tips['tip'])
# use line_kws to set line label for legend
ax = sns.regplot(x="total_bill", y="tip", data=tips, color='b',
line_kws={'label':"y={0:.1f}x+{1:.1f}".format(slope,intercept)})
# plot legend
ax.legend()
plt.show()
If you use more complex fitting function you can use latex notification: https://matplotlib.org/users/usetex.html
To annotate multiple linear regression lines in the case of using seaborn
lmplot
you can do the following.
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_excel('data.xlsx')
# assume some random columns called EAV and PAV in your DataFrame
# assume a third variable used for grouping called "Mammal" which will be used for color coding
p = sns.lmplot(x=EAV, y=PAV,
data=df, hue='Mammal',
line_kws={'label':"Linear Reg"}, legend=True)
ax = p.axes[0, 0]
ax.legend()
leg = ax.get_legend()
L_labels = leg.get_texts()
# assuming you computed r_squared which is the coefficient of determination somewhere else
slope, intercept, r_value, p_value, std_err = stats.linregress(df['EAV'],df['PAV'])
label_line_1 = r'$y={0:.1f}x+{1:.1f}'.format(slope,intercept)
label_line_2 = r'$R^2:{0:.2f}$'.format(0.21) # as an exampple or whatever you want[!
L_labels[0].set_text(label_line_1)
L_labels[1].set_text(label_line_2)
Result:
Simpler syntax.. same result.
import seaborn as sns
import matplotlib.pyplot as plt
from scipy import stats
slope, intercept, r_value, pv, se = stats.linregress(df['alcohol'],df['magnesium'])
sns.regplot(x="alcohol", y="magnesium", data=df,
ci=None, label="y={0:.1f}x+{1:.1f}".format(slope, intercept)).legend(loc="best")