Solve $\frac{\sin(xº)\sin(80º)}{\sin(170º - xº) \sin(70º)} = \frac {\sin(60º)}{\sin (100º)}$
$$\sin170=\sin10$$
$$\sin100=\sin80=\cos10$$
$$\cot(90-x)=\tan x$$
$$\tan10\cot x=\dfrac{\cos(70-60)}{\sin60\sin70}-1$$
$$=\cot70\cot60$$
$$\cot x=\tan20\tan80\cot60$$
Use Proving a fact: $\tan(6^{\circ}) \tan(42^{\circ})= \tan(12^{\circ})\tan(24^{\circ})$, to find
$$\tan20\tan40\tan80=\tan(3\cdot20)=?$$
Consequently $$\cot x=\cot40$$
We can write your equation in the form $$\frac{\sin(100^{\circ})\sin(80^{\circ})}{\sin(60^{\circ})\sin(70^{\circ})}=\frac{\sin(170^{\circ}-x)}{\sin(x)}$$ And now we use the addition formulas $$\sin(170^{\circ}-x)=\sin(170^{\circ})\cos(x)-\cos(170^{\circ})\sin(x)$$ Dividing by $\sin(x)$ $$\sin(170^{\circ})\cot(x)-\cos(170^{\circ})$$ Now you can solve for $\cot(x)$