Spectral symmetry of a certain structured matrix
For real $a,b,c$ and imaginary $d$ the matrix $A$ has chiral symmetry, meaning it anticommutes with a matrix $X$ that squares to the identity: $$X=\left( \begin{array}{cccc} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & -i & 0 & 0 \\ i & 0 & 0 & 0 \\ \end{array} \right),\;\;XA+AX=0,\;\;X^2=I.$$ Hence the spectrum of $A$ has $\pm$ symmetry: $$\det (\lambda-A)=\det(\lambda X^2-XAX)=\det(\lambda+X^2A)=\det(\lambda+A),$$ so if $\lambda$ is an eigenvalue then also $-\lambda$.
An equivalent trick : Let $J:= \operatorname{diag}(1,i,-1,-i)$. Then $J^*AJ=iB$ where $B$ is real and skew-symmetric. Hence the spectrum of $iB$ (thus that of $A$) comes by pairs $\pm\lambda$.