SQL Server: Isolation level leaks across pooled connections
For those using EF in .NET, you can fix this for your whole application by setting a different appname per isolation level (as also stated by @Andomar):
//prevent isolationlevel leaks
//https://stackoverflow.com/questions/9851415/sql-server-isolation-level-leaks-across-pooled-connections
public static DataContext CreateContext()
{
string isolationlevel = Transaction.Current?.IsolationLevel.ToString();
string connectionString = ConfigurationManager.ConnectionStrings["yourconnection"].ConnectionString;
connectionString = Regex.Replace(connectionString, "APP=([^;]+)", "App=$1-" + isolationlevel, RegexOptions.IgnoreCase);
return new DataContext(connectionString);
}
Strange this is still an issue 8 years later ...
In SQL Server 2014 this seem to have been fixed. If using TDS protocol 7.3 or higher.
Running on SQL Server version 12.0.2000.8 the output is:
ReadCommitted
Serializable
ReadCommitted
Unfortunately this change is not mentioned in any documentation such as:
- Behavior Changes to Database Engine Features in SQL Server 2014
- Breaking Changes to Database Engine Features in SQL Server 2014
But the change has been documented on a Microsoft Forum.
Update 2017-03-08
Unfortunately this was later "unfixed" in SQL Server 2014 CU6 and SQL Server 2014 SP1 CU1 since it introduced a bug:
FIX: The transaction isolation level is reset incorrectly when the SQL Server connection is released in SQL Server 2014
"Assume that you use the TransactionScope class in SQL Server client-side source code, and you do not explicitly open the SQL Server connection in a transaction. When the SQL Server connection is released, the transaction isolation level is reset incorrectly."
Workaround
It appears that, since passing through a parameter makes the driver use sp_executesql
, this forces a new scope, similar to a stored procedure. The scope is rolled back after the end of the batch.
Therefore, to avoid the leak, pass through a dummy parameter, as show below.
using (var conn = new SqlConnection(connString))
using (var comm = new SqlCommand(@"
SELECT transaction_isolation_level FROM sys.dm_exec_sessions where session_id = @@SPID
", conn))
{
conn.Open();
Console.WriteLine(comm.ExecuteScalar());
}
using (var conn = new SqlConnection(connString))
using (var comm = new SqlCommand(@"
SET TRANSACTION ISOLATION LEVEL SNAPSHOT;
SELECT transaction_isolation_level FROM sys.dm_exec_sessions where session_id = @@SPID
", conn))
{
comm.Parameters.Add("@dummy", SqlDbType.Int).Value = 0; // see with and without
conn.Open();
Console.WriteLine(comm.ExecuteScalar());
}
using (var conn = new SqlConnection(connString))
using (var comm = new SqlCommand(@"
SELECT transaction_isolation_level FROM sys.dm_exec_sessions where session_id = @@SPID
", conn))
{
conn.Open();
Console.WriteLine(comm.ExecuteScalar());
}
The connection pool calls sp_resetconnection before recycling a connection. Resetting the transaction isolation level is not in the list of things that sp_resetconnection does. That would explain why "serializable" leaks across pooled connections.
I guess you could start each query by making sure it's at the right isolation level:
if not exists (
select *
from sys.dm_exec_sessions
where session_id = @@SPID
and transaction_isolation_level = 2
)
set transaction isolation level read committed
Another option: connections with a different connection string do not share a connection pool. So if you use another connection string for the "serializable" queries, they won't share a pool with the "read committed" queries. An easy way to alter the connection string is to use a different login. You could also add a random option like Persist Security Info=False;
.
Finally, you could make sure every "serializable" query resets the isolation level before it returns. If a "serializable" query fails to complete, you could clear the connection pool to force the tainted connection out of the pool:
SqlConnection.ClearPool(yourSqlConnection);
This is potentially expensive, but failing queries are rare, so you should not have to call ClearPool()
often.