Menu
NEWBEDEV
Python
Javascript
Linux
Cheat sheet
NEWBEDEV
Python 1
Javascript
Linux
Cheat sheet
Contact
New posts in Rearrangement Inequality
Why this inequality is correct
May 09, 2021
Homogenization, what it is in inequalities and how to utilize it to its fullest.
May 09, 2021
prove $\sum_{i=1}^{n}\sqrt{a_i}\ge (n-1)\sum_{i=0}^{n}\frac{1}{\sqrt{a_i}}$
May 09, 2021
If $a^2 + b^2 + c^2 = 1$, what is the the minimum value of $\frac {ab}{c} + \frac {bc}{a} + \frac {ca}{b}$?
May 09, 2021
Typical Olympiad Inequality? If $\sum_i^na_i=n$ with $a_i>0$, then $\sum_{i=1}^n\left(\frac{a_i^3+1}{a_i^2+1}\right)^4\geq n$
May 07, 2021
Inequality : $\frac{a}{\exp(a+b)}+\frac{b}{\exp(b+c)}+\frac{c}{\exp(c+a)}\leq \exp\Big(\frac{-2}{3}\Big)$
May 07, 2021
Nice olympiad inequality :$\frac{xy^2}{4y^3+3}+\frac{yz^2}{4z^3+3}+\frac{zx^2}{4x^3+3}\leq \frac{3}{7}$
May 07, 2021
If $a$, $b$ and $c$ are sides of a triangle, then prove that $a^\text{2}(b+c-a) + b^\text{2}(c+a-b) + c^\text{2}(a+b-c)$ $\leqslant$ $3abc$
May 06, 2021
Proving that $\frac{ab}{c^3}+\frac{bc}{a^3}+\frac{ca}{b^3}> \frac{1}{a}+\frac{1}{b}+\frac{1}{c}$
May 03, 2021
How to prove specific inequality, assuming $\prod\limits_{i=1}^{n}(a_{i}-1)=1$
May 03, 2021
Older Entries »