Tensorflow: Using tf.slice to split the input
You can also try out this one
x = tf.slice(ph, [0,0], [3, 2])
As your starting point is (0,0)
second argument is [0,0]
.
You want to slice three raw and two column so your third argument is [3,2]
.
This will give you desired output.
For me, I tried another example to let me understand the slice function
input = [
[[11, 12, 13], [14, 15, 16]],
[[21, 22, 23], [24, 25, 26]],
[[31, 32, 33], [34, 35, 36]],
[[41, 42, 43], [44, 45, 46]],
[[51, 52, 53], [54, 55, 56]],
]
s1 = tf.slice(input, [1, 0, 0], [1, 1, 3])
s2 = tf.slice(input, [2, 0, 0], [3, 1, 2])
s3 = tf.slice(input, [0, 0, 1], [4, 1, 1])
s4 = tf.slice(input, [0, 0, 1], [1, 0, 1])
s5 = tf.slice(input, [2, 0, 2], [-1, -1, -1]) # negative value means the function cutting tersors automatically
tf.global_variables_initializer()
with tf.Session() as s:
print s.run(s1)
print s.run(s2)
print s.run(s3)
print s.run(s4)
It outputs:
[[[21 22 23]]]
[[[31 32]]
[[41 42]]
[[51 52]]]
[[[12]]
[[22]]
[[32]]
[[42]]]
[]
[[[33]
[36]]
[[43]
[46]]
[[53]
[56]]]
The parameter begin indicates which element you are going to start to cut. The size parameter means how many element you want on that dimension.
You can specify one negative dimension in the size
parameter of tf.slice
. The negative dimension tells Tensorflow to dynamically determine the right value basing its decision on the other dimensions.
import tensorflow as tf
import numpy as np
ph = tf.placeholder(shape=[None,3], dtype=tf.int32)
# look the -1 in the first position
x = tf.slice(ph, [0, 0], [-1, 2])
input_ = np.array([[1,2,3],
[3,4,5],
[5,6,7]])
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
print(sess.run(x, feed_dict={ph: input_}))