Using spread with duplicate identifiers for rows

Since tidyr 1.0.0 pivot_wider is the recommended replacement of spread and you could do the following :

jj <- data.frame(month=rep(1:3,4),
                 student=rep(c("Amy", "Bob"), each=6),
                 A=c(9, 7, 6, 8, 6, 9, 3, 2, 1, 5, 6, 5),
                 B=c(6, 7, 8, 5, 6, 7, 5, 4, 6, 3, 1, 5))

library(tidyr)

pivot_wider(
  jj,
  names_from = "student",
  values_from = c("A","B"),
  names_sep = ".",
  values_fn = list(A= list, B= list)) %>%
  unchop(everything())
#> # A tibble: 6 x 5
#>   month A.Amy A.Bob B.Amy B.Bob
#>   <int> <dbl> <dbl> <dbl> <dbl>
#> 1     1     9     3     6     5
#> 2     1     8     5     5     3
#> 3     2     7     2     7     4
#> 4     2     6     6     6     1
#> 5     3     6     1     8     6
#> 6     3     9     5     7     5

Created on 2019-09-14 by the reprex package (v0.3.0)

The twist in this problem is that month is not unique by student, to solve this :

  • values_fn = list(A= list, B= list)) puts the multiple values in a list
  • unchop(everything()) unnest the lists vertically, you can use unnest as well here

The issue is the two columns for both A and B. If we can make that one value column, we can spread the data as you would like. Take a look at the output for jj_melt when you use the code below.

library(reshape2)
jj_melt <- melt(jj, id=c("month", "student"))
jj_spread <- dcast(jj_melt, month ~ student + variable, value.var="value", fun=sum)
#   month Amy_A Amy_B Bob_A Bob_B
# 1     1    17    11     8     8
# 2     2    13    13     8     5
# 3     3    15    15     6    11

I won't mark this as a duplicate since the other question did not summarize by sum, but the data.table answer could help with one additional argument, fun=sum:

library(data.table)
dcast(setDT(jj), month ~ student, value.var=c("A", "B"), fun=sum)
#    month A_sum_Amy A_sum_Bob B_sum_Amy B_sum_Bob
# 1:     1        17         8        11         8
# 2:     2        13         8        13         5
# 3:     3        15         6        15        11

If you would like to use the tidyr solution, combine it with dcast to summarize by sum.

as.data.frame(jj)
library(tidyr)
jj %>% 
  gather(variable, value, -(month:student)) %>%
  unite(temp, student, variable) %>%
  dcast(month ~ temp, fun=sum)
#   month Amy_A Amy_B Bob_A Bob_B
# 1     1    17    11     8     8
# 2     2    13    13     8     5
# 3     3    15    15     6    11

Edit

Based on your new requirements, I have added an activity column.

library(dplyr)
jj %>% group_by(month, student) %>% 
  mutate(id=1:n()) %>%
  melt(id=c("month", "id", "student")) %>%
  dcast(... ~ student + variable, value.var="value")
#   month id Amy_A Amy_B Bob_A Bob_B
# 1     1  1     9     6     3     5
# 2     1  2     8     5     5     3
# 3     2  1     7     7     2     4
# 4     2  2     6     6     6     1
# 5     3  1     6     8     1     6
# 6     3  2     9     7     5     5

The other solutions can also be used. Here I added an optional expression to arrange the final output by activity number:

library(tidyr)
jj %>% 
  gather(variable, value, -(month:student)) %>%
  unite(temp, student, variable) %>%
  group_by(temp) %>%
  mutate(id=1:n()) %>%
  dcast(... ~ temp) %>%
  arrange(id)
#   month id Amy_A Amy_B Bob_A Bob_B
# 1     1  1     9     6     3     5
# 2     2  2     7     7     2     4
# 3     3  3     6     8     1     6
# 4     1  4     8     5     5     3
# 5     2  5     6     6     6     1
# 6     3  6     9     7     5     5

The data.table syntax is compact because it allows for multiple value.var columns and will take care of the spread for us. We can then skip the melt -> cast process.

library(data.table)
setDT(jj)[, activityID := rowid(student)]
dcast(jj, ... ~ student, value.var=c("A", "B"))
#    month activityID A_Amy A_Bob B_Amy B_Bob
# 1:     1          1     9     3     6     5
# 2:     1          4     8     5     5     3
# 3:     2          2     7     2     7     4
# 4:     2          5     6     6     6     1
# 5:     3          3     6     1     8     6
# 6:     3          6     9     5     7     5

Your answer was missing mutate id! Here is the solution using dplyr packge only.

jj %>% 
  gather(variable, value, -(month:student)) %>% 
  unite(temp, student, variable) %>% 
  group_by(temp) %>% 
  mutate(id=1:n()) %>% 
  spread(temp, value) 
#  A tibble: 6 x 6
#  month    id Amy_A Amy_B Bob_A Bob_B
# * <int> <int> <dbl> <dbl> <dbl> <dbl>
# 1     1     1     9     6     3     5
# 2     1     4     8     5     5     3
# 3     2     2     7     7     2     4
# 4     2     5     6     6     6     1
# 5     3     3     6     8     1     6
# 6     3     6     9     7     5     5

Tags:

R

Dplyr

Tidyr