The GOLF CPU Golfing Challenge: Prime Partitions
Total cycles for examples: 477,918,603
Update 1: Updated to use Lemoine's conjecture.
Update 2: Updated to use the Sieve of Eratosthenes instead of naively finding the primes.
Run with:
python3 assemble.py 52489-prime-partitions.golf
python3 golf.py 52489-prime-partitions.bin x=<INPUT>
Example run:
$ python3 golf.py 52489-prime-partitions.bin x=10233
5
5
10223
Execution terminated after 194500 cycles with exit code 0.
Cycle count for example input:
Input Cycles
9 191
12 282
95 1,666
337 5,792
1023749 21,429,225
20831531 456,481,447
We consider the first (N+1)*8
bytes of the heap, to be an array containing N+1
64-bit values. (As the heap is limited in size, this will only work for N < 2^57
). The value of the entry at i*8
indicates wether i
is a prime:
Value Description
-1 Not a prime
0 Unknown
1 The largest prime found
n > 1 This is a prime and the next prime is n
When we are done building the array it will look like [-1, -1, 3, 5, -1, 7, -1, 11, -1, -1, -1, 13, ...]
.
We use the Sieve of Eratosthenes to build the array.
Next the program does the following in pseudo-code:
if is_prime(x):
print x
else:
if is_even(x):
for p in primes:
if is_prime(x - p):
print p, x - p
exit
else:
if is_prime(x - 2):
print 2, x - 2
else:
for p in primes:
if is_prime(x - 2 * p):
print p, p, 2 * p
exit
This is guaranteed to work because of Lemoine's conjecture and Goldbach's weak conjecture. Lemoine's conjecture hasn't be proven yet, but it's probably true for numbers below 2^57.
call build_primes
mov q, x
call is_prime
jnz print_prime, a
and b, x, 1
jz find_pair, b
# Check if x - 2 is a prime
sub q, x, 2
call is_prime
jnz print_prime_odd2, a
# Input: x, b
find_pair:
mov p, 2
find_pair_loop:
mov d, p
jz find_pair_even, b
add d, d, p
find_pair_even:
sub q, x, d
call is_prime
jnz print_prime2_or_3, a
shl i, p, 3
lw p, i
jmp find_pair_loop
print_prime2_or_3:
jz print_prime2, b
mov x, p
call write_int_ln
print_prime2:
mov x, p
call write_int_ln
mov x, q
call print_prime
print_prime_odd2:
mov p, 2
call print_prime2
print_prime:
call write_int_ln
halt 0
# Input: x
# Memory layout: [-1, -1, 3, 5, -1, 7, -1, 11, ...]
# x: max integer
# p: current prime
# y: pointer to last found prime
# i: current integer
build_primes:
sw 0, -1
sw 8, -1
sw 16, 1
mov y, 16
mov p, 2
build_primes_outer:
mulu i, r, p, p
jnz build_primes_final, r
geu a, i, x
jnz build_primes_final, a
build_primes_inner:
shl m, i, 3
sw m, -1
add i, i, p
geu a, i, x
jz build_primes_inner, a
build_primes_next:
inc p
shl m, p, 3
lw a, m
jnz build_primes_next, a
sw y, p
mov y, m
sw y, 1
jmp build_primes_outer
build_primes_final:
inc p
geu a, p, x
jnz build_primes_ret, a
shl m, p, 3
lw a, m
jnz build_primes_final, a
sw y, p
mov y, m
sw y, 1
jmp build_primes_final
build_primes_ret:
ret
# Input: q
# Output: a
is_prime:
shl m, q, 3
lw a, m
neq a, a, -1
ret a
write_int:
divu x, m, x, 10
jz write_int_done, x
call write_int
write_int_done:
add m, m, ord("0")
sw -1, m
ret
write_int_ln:
call write_int
mov m, ord("\n")
sw -1, m
ret