Unexpected behavior of `Exclusions` in `ParametricPlot`

Why not plot the phase space with the true topology?

ParametricPlot3D[{50 Cos[ϕsol1[t]], 50 Sin[ϕsol1[t]], ϕsol1'[t]}, {t, tmax/10, tmax},
                 PlotPoints -> 1000, PlotStyle -> Thin]

plot


You don't need Exclusion at all. Plot of Mod shows it.

Plot[ Mod[t, 2 π, -Pi], {t, 20, 30}]

ParametricPlot[{Mod[ϕsol1[t], 2 π, -π],  ϕsol1'[
t]}, {t, 20, 30}, AspectRatio -> 1/GoldenRatio,  
AxesLabel -> {ϕ, 
\!\(\*OverscriptBox[\(ϕ\), \(.\)]\)}, ImageSize -> 300,  
PlotPoints -> 100, PlotStyle -> Thin]

enter image description here

But i think, there is also a problem with accuracy. Compare standart and high precision NDSolve (Since i'm working with Version 8.0, used NDSolve instead of NDSolveValue).

You can not trust result for t > about 10.

ϕsol1 = ϕ /. 
First@NDSolve[{DDPeq /. 
  paramvals, ϕ[0] == -π/2, ϕ'[0] == 0}, ϕ, {t, 
 tmax/10, tmax}, MaxSteps -> 10^5]

ϕsol1a = ϕ /. 
First@NDSolve[{DDPeq /. 
  paramvals, ϕ[0] == -π/2, ϕ'[0] == 0}, ϕ, {t, 
 0, 20}, MaxSteps -> 10^6, WorkingPrecision -> 55, 
AccuracyGoal -> 25, PrecisionGoal -> 25, MaxStepSize -> 10^-3]

Plot[{ϕsol1[t], ϕsol1'[t]}, {t, 0, 20}, 
 AspectRatio -> 1/GoldenRatio, AxesLabel -> {ϕ, 
 \!\(\*OverscriptBox[\(ϕ\), \(.\)]\)}, ImageSize -> 300, 
 PlotPoints -> 100, PlotStyle -> {Blue, Red}]

enter image description here

Plot[{ϕsol1a[t], ϕsol1a'[t]}, {t, 0, 20}, 
  AspectRatio -> 1/GoldenRatio, AxesLabel -> {ϕ, 
\!\(\*OverscriptBox[\(ϕ\), \(.\)]\)}, ImageSize -> 300, 
PlotPoints -> 100, PlotStyle -> {Blue, Red}]

enter image description here


As @Akku14 notes, Mod automatically triggers an Exclusion, so no need to add it manually.

Maybe cranking up PlotPoints or MaxRecursion is just your best bet. I find this acceptable and it takes 12 seconds:

ParametricPlot[{Mod[ϕsol1[t], 2 π, -π], ϕsol1'[t]}, {t, tmax/10, tmax},
  AspectRatio -> 1/GoldenRatio, PlotStyle -> Thin, MaxRecursion -> 12]

enter image description here

At least that's the only thing I can come up with!

I guess the wedges appear because ϕ is changing more rapidly when ϕ' is large, so a fixed time buffer around the exclusions translates into a larger gap.