Update in Segment Tree
So, it is needed to update efficiently the interval [L,R]
with to the corresponding values of the arithmetic progression with the step X
, and to be able to find efficiently the sums over the different intervals.
In order to solve this problem efficiently - let's make use of the Segment Tree with Lazy Propagation.
The basic ideas are following:
The arithmetic progression can be defined by the
first
andlast
items and theamount of items
It is possible to obtain a new arithmetic progression by combination of the
first
andlast
items of two different arithmetic progressions (which have the same amount of items). Thefirst
andlast
items of the new arithmetic progression will be just a combination of the corresponding items of combined arithmetic progressionsHence, we can associate with each node of the Segment Tree - the
first
andlast
values of the arithmetic progression, which spans over the given intervalDuring update, for all affected intervals, we can lazily propagate through the Segment Tree - the values of the
first
andlast
items, and update the aggregated sums on these intervals.
So, the node of the Segment Tree for given problem will have structure:
class Node {
int left; // Left boundary of the current SegmentTree node
int right; // Right boundary of the current SegmentTree node
int sum; // Sum on the interval [left,right]
int first; // First item of arithmetic progression inside given node
int last; // Last item of arithmetic progression
Node left_child;
Node right_child;
// Constructor
Node(int[] arr, int l, int r) { ... }
// Add arithmetic progression with step X on the interval [l,r]
// O(log(N))
void add(int l, int r, int X) { ... }
// Request the sum on the interval [l,r]
// O(log(N))
int query(int l, int r) { ... }
// Lazy Propagation
// O(1)
void propagate() { ... }
}
The specificity of the Segment Tree with Lazy Propagation is such, that every time, when the node of the tree is traversed - the Lazy Propagation routine (which has complexity O(1)) is executed for the given node. So, below is provided the illustration of the Lazy Propagation logic for some arbitrary node, which has children:
As you can see, during the Lazy Propagation the first
and the last
items of the arithmetic progressions of the child nodes are updated, also the sum
inside the parent node is updated as well.
Implementation
Below provided the Java implementation of the described approach (with additional comments):
class Node {
int left; // Left boundary of the current SegmentTree node
int right; // Right boundary of the current SegmentTree node
int sum; // Sum on the interval
int first; // First item of arithmetic progression
int last; // Last item of arithmetic progression
Node left_child;
Node right_child;
/**
* Construction of a Segment Tree
* which spans over the interval [l,r]
*/
Node(int[] arr, int l, int r) {
left = l;
right = r;
if (l == r) { // Leaf
sum = arr[l];
} else { // Construct children
int m = (l + r) / 2;
left_child = new Node(arr, l, m);
right_child = new Node(arr, m + 1, r);
// Update accumulated sum
sum = left_child.sum + right_child.sum;
}
}
/**
* Lazily adds the values of the arithmetic progression
* with step X on the interval [l, r]
* O(log(N))
*/
void add(int l, int r, int X) {
// Lazy propagation
propagate();
if ((r < left) || (right < l)) {
// If updated interval doesn't overlap with current subtree
return;
} else if ((l <= left) && (right <= r)) {
// If updated interval fully covers the current subtree
// Update the first and last items of the arithmetic progression
int first_item_offset = (left - l) + 1;
int last_item_offset = (right - l) + 1;
first = X * first_item_offset;
last = X * last_item_offset;
// Lazy propagation
propagate();
} else {
// If updated interval partially overlaps with current subtree
left_child.add(l, r, X);
right_child.add(l, r, X);
// Update accumulated sum
sum = left_child.sum + right_child.sum;
}
}
/**
* Returns the sum on the interval [l, r]
* O(log(N))
*/
int query(int l, int r) {
// Lazy propagation
propagate();
if ((r < left) || (right < l)) {
// If requested interval doesn't overlap with current subtree
return 0;
} else if ((l <= left) && (right <= r)) {
// If requested interval fully covers the current subtree
return sum;
} else {
// If requested interval partially overlaps with current subtree
return left_child.query(l, r) + right_child.query(l, r);
}
}
/**
* Lazy propagation
* O(1)
*/
void propagate() {
// Update the accumulated value
// with the sum of Arithmetic Progression
int items_count = (right - left) + 1;
sum += ((first + last) * items_count) / 2;
if (right != left) { // Current node is not a leaf
// Calculate the step of the Arithmetic Progression of the current node
int step = (last - first) / (items_count - 1);
// Update the first and last items of the arithmetic progression
// inside the left and right subtrees
// Distribute the arithmetic progression between child nodes
// [a(1) to a(N)] -> [a(1) to a(N/2)] and [a(N/2+1) to a(N)]
int mid = (items_count - 1) / 2;
left_child.first += first;
left_child.last += first + (step * mid);
right_child.first += first + (step * (mid + 1));
right_child.last += last;
}
// Reset the arithmetic progression of the current node
first = 0;
last = 0;
}
}
The Segment Tree in provided solution is implemented explicitly - using objects and references, however it can be easily modified in order to make use of the arrays instead.
Testing
Below provided the randomized tests, which compare two implementations:
- Processing queries by sequential increase of each item of the array with O(N) and calculating the sums on intervals with O(N)
- Processing the same queries using Segment Tree with O(log(N)) complexity:
The Java implementation of the randomized tests:
public static void main(String[] args) {
// Initialize the random generator with predefined seed,
// in order to make the test reproducible
Random rnd = new Random(1);
int test_cases_num = 20;
int max_arr_size = 100;
int num_queries = 50;
int max_progression_step = 20;
for (int test = 0; test < test_cases_num; test++) {
// Create array of the random length
int[] arr = new int[rnd.nextInt(max_arr_size) + 1];
Node segmentTree = new Node(arr, 0, arr.length - 1);
for (int query = 0; query < num_queries; query++) {
if (rnd.nextDouble() < 0.5) {
// Update on interval [l,r]
int l = rnd.nextInt(arr.length);
int r = rnd.nextInt(arr.length - l) + l;
int X = rnd.nextInt(max_progression_step);
update_sequential(arr, l, r, X); // O(N)
segmentTree.add(l, r, X); // O(log(N))
}
else {
// Request sum on interval [l,r]
int l = rnd.nextInt(arr.length);
int r = rnd.nextInt(arr.length - l) + l;
int expected = query_sequential(arr, l, r); // O(N)
int actual = segmentTree.query(l, r); // O(log(N))
if (expected != actual) {
throw new RuntimeException("Results are different!");
}
}
}
}
System.out.println("All results are equal!");
}
static void update_sequential(int[] arr, int left, int right, int X) {
for (int i = left; i <= right; i++) {
arr[i] += X * ((i - left) + 1);
}
}
static int query_sequential(int[] arr, int left, int right) {
int sum = 0;
for (int i = left; i <= right; i++) {
sum += arr[i];
}
return sum;
}