Using numpy to efficiently convert 16-bit image data to 8 bit for display, with intensity scaling
What you are doing is halftoning your image.
The methods proposed by others work great, but they are repeating a lot of expensive computations over and over again. Since in a uint16
there are at most 65,536 different values, using a look-up table (LUT) can streamline things a lot. And since the LUT is small, you don't have to worry that much about doing things in place, or not creating boolean arrays. The following code reuses Bi Rico's function to create the LUT:
import numpy as np
import timeit
rows, cols = 768, 1024
image = np.random.randint(100, 14000,
size=(1, rows, cols)).astype(np.uint16)
display_min = 1000
display_max = 10000
def display(image, display_min, display_max): # copied from Bi Rico
# Here I set copy=True in order to ensure the original image is not
# modified. If you don't mind modifying the original image, you can
# set copy=False or skip this step.
image = np.array(image, copy=True)
image.clip(display_min, display_max, out=image)
image -= display_min
np.floor_divide(image, (display_max - display_min + 1) / 256,
out=image, casting='unsafe')
return image.astype(np.uint8)
def lut_display(image, display_min, display_max) :
lut = np.arange(2**16, dtype='uint16')
lut = display(lut, display_min, display_max)
return np.take(lut, image)
>>> np.all(display(image, display_min, display_max) ==
lut_display(image, display_min, display_max))
True
>>> timeit.timeit('display(image, display_min, display_max)',
'from __main__ import display, image, display_min, display_max',
number=10)
0.304813282062
>>> timeit.timeit('lut_display(image, display_min, display_max)',
'from __main__ import lut_display, image, display_min, display_max',
number=10)
0.0591987428298
So there is a x5 speed-up, which is not a bad thing, I guess...
To reduce memory usage, do the clipping in-place and avoid creating the boolean arrays.
dataf = image_data.astype(float)
numpy.clip(dataf, display_min, display_max, out=dataf)
dataf -= display_min
datab = ((255. / (display_max - display_min)) * dataf).astype(numpy.uint8)
If you keep your clipping limits as integer values, you can alternately do this:
numpy.clip(image_data, display_min, display_max, out=image_data)
image_data-= display_min
datab = numpy.empty_like(image_data)
numpy.multiply(255. / (display_max - display_min), image_data, out=datab)
Note: that a temporary float array will still be created in the last line before the uint8
array is created.
I would avoid casting the image to float, you could do something like:
import numpy as np
def display(image, display_min, display_max):
# Here I set copy=True in order to ensure the original image is not
# modified. If you don't mind modifying the original image, you can
# set copy=False or skip this step.
image = np.array(image, copy=True)
image.clip(display_min, display_max, out=image)
image -= display_min
image //= (display_min - display_max + 1) / 256.
image = image.astype(np.uint8)
# Display image
Here an optional copy of the image is made in it's native data type and an 8 bit copy is make on the last line.