What is the correct way to change image channel ordering between channels first and channels last?
To reorder data
You can use numpy.rollaxis to roll the axis 3 to position 1 (considering you have the batch size as dimension 0).
np.rollaxis(imagesArray, 3, 1)
But, if you're using keras, you might want to change its configuration or define it per layer. Theano doesn't require anything from you if you're using Keras.
Keras can be configured with channels first or channels last, besides allowing you to define it in every individual layer, so you don't have to change your data.
To configure keras
Find the keras.json
file and change it. The file is usually installed in C:\Users\yourusername\.keras
or ~/.keras
depending on your OS.
Change "image_data_format": "channels_last"
to "channels_first"
or vice-versa, as you wish.
Usually, working with "channels_last" is less troublesome because of a great amount of other (non convolutional) functions that work only on the last axis.
Defining channel order in layers.
The Keras documentation has all information about parameters for layers, including the data_format
parameter.
I agree with @Qualia 's comment, np.moveaxis(a, source, destination) is easier to understand. This does the job:
x = np.zeros((12, 12, 3))
x.shape
#yields:
(12, 12, 3)
x = np.moveaxis(x, -1, 0)
x.shape
#yields:
(3, 12, 12)
If you're looking at the fastest option, go for .transpose(...)
. It's even faster than np.einsum
.
img = np.random.random((1000, 1000, 3))
img.shape
# (1000, 1000, 3)
%timeit img.transpose(2, 0, 1)
# 385 ns ± 1.11 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit np.rollaxis(img, -1, 0)
# 2.7 µs ± 50.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit np.einsum('ijk->kij', img)
# 2.75 µs ± 31.9 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit np.moveaxis(img, -1, 0)
# 7.26 µs ± 57.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
np.allclose(img.transpose(2, 0, 1), np.einsum('ijk->kij', img))
# True
np.allclose(img.transpose(2, 0, 1), np.moveaxis(img, -1, 0))
# True
np.allclose(img.transpose(2, 0, 1), np.rollaxis(img,-1, 0))
# True