What would be the fastest method to test for primality in Java?
You took the first step in eliminating all multiples of 2.
However, why did you stop there? you could have eliminated all multiples of 3 except for 3, all multiples of 5 except for 5, etc.
When you follow this reasoning to its conclusion, you get the Sieve of Eratosthenes.
Here's another way:
boolean isPrime(long n) {
if(n < 2) return false;
if(n == 2 || n == 3) return true;
if(n%2 == 0 || n%3 == 0) return false;
long sqrtN = (long)Math.sqrt(n)+1;
for(long i = 6L; i <= sqrtN; i += 6) {
if(n%(i-1) == 0 || n%(i+1) == 0) return false;
}
return true;
}
and BigInteger's isProbablePrime(...)
is valid for all 32 bit int
's.
EDIT
Note that isProbablePrime(certainty)
does not always produce the correct answer. When the certainty is on the low side, it produces false positives, as @dimo414 mentioned in the comments.
Unfortunately, I could not find the source that claimed isProbablePrime(certainty)
is valid for all (32-bit) int
's (given enough certainty!).
So I performed a couple of tests. I created a BitSet
of size Integer.MAX_VALUE/2
representing all uneven numbers and used a prime sieve to find all primes in the range 1..Integer.MAX_VALUE
. I then looped from i=1..Integer.MAX_VALUE
to test that every new BigInteger(String.valueOf(i)).isProbablePrime(certainty) == isPrime(i)
.
For certainty 5 and 10, isProbablePrime(...)
produced false positives along the line. But with isProbablePrime(15)
, no test failed.
Here's my test rig:
import java.math.BigInteger;
import java.util.BitSet;
public class Main {
static BitSet primes;
static boolean isPrime(int p) {
return p > 0 && (p == 2 || (p%2 != 0 && primes.get(p/2)));
}
static void generatePrimesUpTo(int n) {
primes = new BitSet(n/2);
for(int i = 0; i < primes.size(); i++) {
primes.set(i, true);
}
primes.set(0, false);
int stop = (int)Math.sqrt(n) + 1;
int percentageDone = 0, previousPercentageDone = 0;
System.out.println("generating primes...");
long start = System.currentTimeMillis();
for(int i = 0; i <= stop; i++) {
previousPercentageDone = percentageDone;
percentageDone = (int)((i + 1.0) / (stop / 100.0));
if(percentageDone <= 100 && percentageDone != previousPercentageDone) {
System.out.println(percentageDone + "%");
}
if(primes.get(i)) {
int number = (i * 2) + 1;
for(int p = number * 2; p < n; p += number) {
if(p < 0) break; // overflow
if(p%2 == 0) continue;
primes.set(p/2, false);
}
}
}
long elapsed = System.currentTimeMillis() - start;
System.out.println("finished generating primes ~" + (elapsed/1000) + " seconds");
}
private static void test(final int certainty, final int n) {
int percentageDone = 0, previousPercentageDone = 0;
long start = System.currentTimeMillis();
System.out.println("testing isProbablePrime(" + certainty + ") from 1 to " + n);
for(int i = 1; i < n; i++) {
previousPercentageDone = percentageDone;
percentageDone = (int)((i + 1.0) / (n / 100.0));
if(percentageDone <= 100 && percentageDone != previousPercentageDone) {
System.out.println(percentageDone + "%");
}
BigInteger bigInt = new BigInteger(String.valueOf(i));
boolean bigIntSays = bigInt.isProbablePrime(certainty);
if(isPrime(i) != bigIntSays) {
System.out.println("ERROR: isProbablePrime(" + certainty + ") returns "
+ bigIntSays + " for i=" + i + " while it " + (isPrime(i) ? "is" : "isn't" ) +
" a prime");
return;
}
}
long elapsed = System.currentTimeMillis() - start;
System.out.println("finished testing in ~" + ((elapsed/1000)/60) +
" minutes, no false positive or false negative found for isProbablePrime(" + certainty + ")");
}
public static void main(String[] args) {
int certainty = Integer.parseInt(args[0]);
int n = Integer.MAX_VALUE;
generatePrimesUpTo(n);
test(certainty, n);
}
}
which I ran by doing:
java -Xmx1024m -cp . Main 15
The generating of the primes took ~30 sec on my machine. And the actual test of all i
in 1..Integer.MAX_VALUE
took around 2 hours and 15 minutes.
This is the most elegant way:
public static boolean isPrime(int n) {
return !new String(new char[n]).matches(".?|(..+?)\\1+");
}
Java 1.4+. No imports needed.
So short. So beautiful.