Why does GCC or Clang not optimise reciprocal to 1 instruction when using fast-math
Because the precision of RCPPS
is a lot lower than float
division.
An option to enable that optimization would not be appropriate as part of -ffast-math
.
The x86 target options of the gcc manual says there in fact is an option that (with -ffast-math
) does get gcc to use them (with a Newton-Raphson iteration - Fast vectorized rsqrt and reciprocal with SSE/AVX depending on precision / Newton Raphson with SSE2 - can someone explain me these 3 lines - SIMD and scalar have basically the same performance per instruction, and Newton-iteration math is the same):
-mrecip
This option enables use of RCPSS and RSQRTSS instructions (and their vectorized variants RCPPS and RSQRTPS) with an additional Newton-Raphson step to increase precision instead of DIVSS and SQRTSS (and their vectorized variants) for single-precision floating-point arguments. These instructions are generated only when -funsafe-math-optimizations is enabled together with -finite-math-only and -fno-trapping-math. Note that while the throughput of the sequence is higher than the throughput of the non-reciprocal instruction, the precision of the sequence can be decreased by up to 2 ulp (i.e. the inverse of 1.0 equals 0.99999994).Note that GCC implements 1.0f/sqrtf(x) in terms of RSQRTSS (or RSQRTPS) already with -ffast-math (or the above option combination), and doesn't need -mrecip.
Also note that GCC emits the above sequence with additional Newton-Raphson step for vectorized single-float division and vectorized sqrtf(x) already with -ffast-math (or the above option combination), and doesn't need -mrecip.
-mrecip=opt
This option controls which reciprocal estimate instructions may be used. opt is a comma-separated list of options, which may be preceded by a ‘!’ to invert the option:
’all’ Enable all estimate instructions. ‘default’ Enable the default instructions, equivalent to -mrecip. ‘none’ Disable all estimate instructions, equivalent to -mno-recip. ‘div’ Enable the approximation for scalar division. ‘vec-div’ Enable the approximation for vectorized division. ‘sqrt’ Enable the approximation for scalar square root. ‘vec-sqrt’ Enable the approximation for vectorized square root.
So, for example, -mrecip=all,!sqrt enables all of the reciprocal approximations, except for square root.
Note that Intel's new Skylake design further improves FP division performance, to 8-11c latency, 1/3c throughput. (Or one per 5c throughput for 256b vectors, but same latency for vdivps
). They widened the dividers, so AVX vdivps ymm
is now the same latency as for 128b vectors.
(SnB to Haswell did 256b div and sqrt with about twice the latency / recip-throughput, so they clearly only had 128b-wide dividers.) Skylake also pipelines both operations more, so about 4 div operations can be in flight. sqrt is faster, too.
So in several years, once Skylake is widespread, it'll only be worth doing rcpps
if you need to divide by the same thing multiple times. rcpps
and a couple fma
might possibly have slightly higher throughput but worse latency. Also, vdivps
is only a single uop; so more execution resources will be available for things to happen at the same time as the division.
It remains to be seen what the initial implementation of AVX512 will be like. Presumably rcpps
and a couple FMAs for Newton-Raphson iterations will be a win if FP division performance is a bottleneck. If uop throughput is a bottleneck and there's plenty of other work to do while the divisions are in flight, vdivps zmm
is probably still good (unless the same divisor is used repeatedly, of course).