Color gradient varying in a path
I like the dimensionality suggested by VertexColors
. Given your definitions of ang
... parallelogram2
, I tried variations of colour schemes such as the following.
Graphics[{
EdgeForm[{Thick, Black}],
Table[
Translate[rectangle, i*shift] /.
Polygon[x_List] :>
Polygon[x, VertexColors ->
Map[ColorData["SolarColors", #] &, Range[i/6, 0, -i/12]]],
{i, 1, 4}],
{parallelogram2 /.
Polygon[x_List] :>
Polygon[x, VertexColors ->
Table[Lighter[ColorData["RoseColors", k], 0.7],
{k, {0.35, 0.57, 0.78, 1.}}]]},
Table[
Translate[parallelogram, i*shift] /.
Polygon[x_List] :>
Polygon[x, VertexColors ->
Map[Lighter[ColorData["RoseColors", #], i/6] &,
Range[0.7 - i*0.05, 1, (0.3 + i*0.05)/3]]],
{i, 0, 4}]
}]
col = Table[Blend[{RGBColor[1, 0, 0, 1], RGBColor[0, 1, 0, 0]}, x], {x, 0, 1, 1/11}];
Graphics[{
EdgeForm[{Thick, Black}],
Table[{FaceForm[col[[2 n - 1]]], Translate[rectangle, n shift]}, {n,1, 4}],
Table[{FaceForm[col[[2 n]]], Translate[parallelogram, (n - 1) shift]}, {n, 1, 5}],
{FaceForm[col[[11]]], parallelogram2}}]