convert object of class "dist" into data frame in r
library(maps)
data(us.cities)
d <- dist(head(us.cities[c("lat", "long")]))
## 1 2 3 4 5
## 2 20.160489
## 3 23.139853 40.874243
## 4 15.584303 9.865374 38.579820
## 5 27.880674 7.882037 48.707100 15.189882
## 6 26.331187 41.720457 6.900101 41.036931 49.328558
library(reshape2)
df <- melt(as.matrix(d), varnames = c("row", "col"))
df[df$row > df$col,]
## row col value
## 2 2 1 20.160489
## 3 3 1 23.139853
## 4 4 1 15.584303
## 5 5 1 27.880674
## 6 6 1 26.331187
## 9 3 2 40.874243
## 10 4 2 9.865374
## 11 5 2 7.882037
## 12 6 2 41.720457
## 16 4 3 38.579820
## 17 5 3 48.707100
## 18 6 3 6.900101
## 23 5 4 15.189882
## 24 6 4 41.036931
## 30 6 5 49.328558
I would actually write a function something like this:
myFun <- function(inDist) {
if (class(inDist) != "dist") stop("wrong input type")
A <- attr(inDist, "Size")
B <- if (is.null(attr(inDist, "Labels"))) sequence(A) else attr(inDist, "Labels")
if (isTRUE(attr(inDist, "Diag"))) attr(inDist, "Diag") <- FALSE
if (isTRUE(attr(inDist, "Upper"))) attr(inDist, "Upper") <- FALSE
data.frame(
row = B[unlist(lapply(sequence(A)[-1], function(x) x:A))],
col = rep(B[-length(B)], (length(B)-1):1),
value = as.vector(inDist))
}
Now, imagine we are starting with (note the non-numeric row and column names):
dd <- as.dist((1 - cor(USJudgeRatings)[1:5, 1:5])/2)
# CONT INTG DMNR DILG
# INTG 0.56659545
# DMNR 0.57684427 0.01769236
# DILG 0.49380400 0.06424445 0.08157452
# CFMG 0.43154385 0.09295712 0.09332092 0.02060062
We can change it with a simple:
myFun(dd)
# row col value
# 1 INTG CONT 0.56659545
# 2 DMNR CONT 0.57684427
# 3 DILG CONT 0.49380400
# 4 CFMG CONT 0.43154385
# 5 DMNR INTG 0.01769236
# 6 DILG INTG 0.06424445
# 7 CFMG INTG 0.09295712
# 8 DILG DMNR 0.08157452
# 9 CFMG DMNR 0.09332092
# 10 CFMG DILG 0.02060062
A quick performance comparison:
set.seed(1)
x <- matrix(rnorm(1000*1000), nrow = 1000)
dd <- dist(x)
## Jake's function
fun2 <- function(inDist) {
df <- melt(as.matrix(inDist), varnames = c("row", "col"))
df[as.numeric(df$row) > as.numeric(df$col), ]
}
all(fun2(dd) == myFun(dd))
# [1] TRUE
system.time(fun2(dd))
# user system elapsed
# 0.346 0.002 0.349
system.time(myFun(dd))
# user system elapsed
# 0.012 0.000 0.015