Derivative of the inverse of a matrix
The major trouble in matrix calculus is that the things are no longer commuting, but one tends to use formulae from the scalar function calculus like $(x(t)^{-1})'=-x(t)^{-2}x'(t)$ replacing $x$ with the matrix $K$. One has to be more careful here and pay attention to the order. The easiest way to get the derivative of the inverse is to derivate the identity $I=KK^{-1}$ respecting the order $$ \underbrace{(I)'}_{=0}=(KK^{-1})'=K'K^{-1}+K(K^{-1})'. $$ Solving this equation with respect to $(K^{-1})'$ (again paying attention to the order (!)) will give $$ K(K^{-1})'=-K'K^{-1}\qquad\Rightarrow\qquad (K^{-1})'=-K^{-1}K'K^{-1}. $$
Yes, your calculation is wrong, note that $K$ may not commute with $\frac{\partial K}{\partial p}$, hence you must apply the chain rule correctly. The derivative of $\def\inv{\mathrm{inv}}\inv \colon \def\G{\mathord{\rm GL}}\G_n \to \G_n$ is not given by $\inv'(A)B = -A^2B$, but by $\inv'(A)B = -A^{-1}BA^{-1}$. To see that, note that for small enough $B$ we have \begin{align*} \inv(A + B) &= (A + B)^{-1}\\ &= (\def\I{\mathord{\rm Id}}\I + A^{-1}B)^{-1}A^{-1}\\ &= \sum_k (-1)^k (A^{-1}B)^kA^{-1}\\ &= A^{-1} - A^{-1}BA^{-1} + o(\|B\|) \end{align*} Hence, $\inv'(A)B= -A^{-1}BA^{-1}$, and therefore, by the chain rule $$ \partial_p (\inv \circ K) = \inv'\circ K\bigl(\partial_p K) = -K^{-1}(\partial_p K) K^{-1} $$