Generate a mandelbrot fractal

Assuming machine code counts, I wrote a prod a while back that generates a 320x200 color Mandelbrot in 64 bytes - http://www.pouet.net/prod.php?which=53287

Screenshot

Here is the code:

; "Microbrot" by Sir_Lagsalot

org 100h
mov al,13h
int 10h

les ax,[bx]

FillLoop:
cwd
mov ax,di
mov cx,320
div cx
sub ax,100
dec dh

xor bx,bx
xor si,si

MandelLoop:
mov bp,si
imul si,bx
add si,si
imul bx,bx
jo MandelBreak
imul bp,bp
jo MandelBreak
add bx,bp
jo MandelBreak
sub bx,bp
sub bx,bp

sar bx,6
add bx,dx
sar si,6
add si,ax

loop MandelLoop

MandelBreak:
xchg ax,cx
stosb
jmp FillLoop

Compiled version in base64:

sBPNEMQHmYn4uUAB9/GD6GT+zjHbMfaJ9Q+v8wH2D6/bcBkPr+1wFAHrcBAp6ynrwfsGAdPB/gYBxuLbkarrxg==

C, 988 chars

Here's mine, which does an ASCII mandelbrot, written as an ASCII mandelbrot, in C.

Oh.. and it also has interactive zoom functionality. (press the keypad numbers 1-9 to zoom in on the respective area)

int main(int argc, char* argv[]){ unsigned
char c='r';double x1,y,y1,t=0,q=78,r=22,x,
x2,y2,a,b,v;do{(c=='r')?(y2=-(y1=-1.6),x1=
-2.0f,x2=0.8):(c=='?')? c=0,   printf("%f\
,%f:%f,%f",x1,y1,x2,y2):(c     <':'&&c>48)
?x=x1,y=y1,*(c>'3'&&c<':'        ?&y1: &t)
+=(y2-y1)/3,*(c>'6'&&c<            ':'?&y1
:&t)+=(y2-y1)/3, *((c               == '8'
||c+3=='8'||c+3 +3==               '8'?&x1
:&t))+=(x2-x1     )/                3,*((c
=='9'||c+3==                        '9'||c
+6=='9'                          ?&x1: &t)
)+=2*(x2-x1)                        /3,x2=
x1+(x2-x)/3,      y2                 =y1+(
y2-y)/3:(c=0);for(y=                y2;y>=
y1&&c;c=1,y-=(y2-y1)/r,            putchar
('\n')) for(x=x1;x<=x2;            x+=(x2-
x1)/q){a=b=c=0; while  (        ++c&&(a=(t
=a)*a)<4&&(v=b*b)<4)a-=v-x     ,b=y+b*2*t;
putchar("#@XMW*N&KPBQYKG$R"   "STEEVxHOUV"
"CT()[]%JL={}eou?/\\|Ili+~<>_-^\"!;:`,. "[
c?c>>2:63]);}} while((c=getchar ())!='x');
return 0;/* Mandelbrot - S.Goodwin.2001*/}

Originally posted here http://marquisdegeek.com/rnd_obs.php


Common lisp -- 195 chars

(loop for y from -1 to 1 by 1/15 do
  (loop for x from -2 to 1 by .04 do
    (let*((c 126) (z (complex x y)) (a z))
      (loop while (< (abs (setq z (+ (* z z) a))) 2)
            while (> (decf c) 32)) 
      (princ (code-char c))))
  (terpri))

Tested with sbcl and clisp. Result:

~~~~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}||||||||{{{zyvrwum{|||||}}}}}}~~~~~~~~~~~~~
~~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}|||||||||{{{zyxvptwyz{{|||||}}}}}}~~~~~~~~~~~
~~~~~~~~~}}}}}}}}}}}}}}}}}}}}|||||||||{{{{zwLtb huwx{{{{||||}}}}}}}~~~~~~~~~
~~~~~~~~}}}}}}}}}}}}}}}}}}}|||||||||{{zzzyxvn    Knwyz{{{{||||}}}}}}~~~~~~~~
~~~~~~~}}}}}}}}}}}}}}}}}}||||||||{{zzzzyyywuk     qwxyzzzz{{|||}}}}}}~~~~~~~
~~~~~}}}}}}}}}}}}}}}}}}|||||||{{{zxjnpwwtjsqpi   lqrujnxyyxrz{|}}}}}}}}~~~~~
~~~~}}}}}}}}}}}}}}}}}|||||{{{{{zzzxt>  qf             pttfqeqz{|}}}}}}}}~~~~
~~~~}}}}}}}}}}}}}}}|||{{{{{{{{zzzxwup                      sxz{||}}}}}}}~~~~
~~~}}}}}}}}}}}}|||{z{{{{{{{zzzzywkmo                      rwyz{{||}}}}}}}~~~
~~}}}}}}}}}||||{{zwvyyyyyyyyyyyxvsP                        swvz{||}}}}}}}}~~
~~}}}}|||||||{{{zzwrtsww^uwwxxwvr                            iz{|||}}}}}}}~~
~}}}|||||||{{{{{zyxws  mj Ubhuutl                           sxz{|||}}}}}}}}~
~}||||||||{{{{{zyytun         qq                            avz{|||}}}}}}}}~
~|||||||{{zzzyxsvvum           j                            Sz{{|||}}}}}}}}~
~{{{{{yyzzzyyxwtbUP                                        qyz{{||||}}}}}}}~
~                                                        pvxyz{{||||}}}}}}}}
~{{{{{yyzzzyyxwtbUP                                        qyz{{||||}}}}}}}~
~|||||||{{zzzyxsvvum           j                            Sz{{|||}}}}}}}}~
~}||||||||{{{{{zyytun         qq                            avz{|||}}}}}}}}~
~}}}|||||||{{{{{zyxws  mj Ubhuutl                           sxz{|||}}}}}}}}~
~~}}}}|||||||{{{zzwrtsww^uwwxxwvr                            iz{|||}}}}}}}~~
~~}}}}}}}}}||||{{zwvyyyyyyyyyyyxvsP                        swvz{||}}}}}}}}~~
~~~}}}}}}}}}}}}|||{z{{{{{{{zzzzywkmo                      rwyz{{||}}}}}}}~~~
~~~~}}}}}}}}}}}}}}}|||{{{{{{{{zzzxwup                      sxz{||}}}}}}}~~~~
~~~~}}}}}}}}}}}}}}}}}|||||{{{{{zzzxt>  qf             pttfqeqz{|}}}}}}}}~~~~
~~~~~}}}}}}}}}}}}}}}}}}|||||||{{{zxjnpwwtjsqpi   lqrujnxyyxrz{|}}}}}}}}~~~~~
~~~~~~~}}}}}}}}}}}}}}}}}}||||||||{{zzzzyyywuk     qwxyzzzz{{|||}}}}}}~~~~~~~
~~~~~~~~}}}}}}}}}}}}}}}}}}}|||||||||{{zzzyxvn    Knwyz{{{{||||}}}}}}~~~~~~~~
~~~~~~~~~}}}}}}}}}}}}}}}}}}}}|||||||||{{{{zwLtb huwx{{{{||||}}}}}}}~~~~~~~~~
~~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}|||||||||{{{zyxvptwyz{{|||||}}}}}}~~~~~~~~~~~
~~~~~~~~~~~~~}}}}}}}}}}}}}}}}}}}}||||||||{{{zyvrwum{|||||}}}}}}~~~~~~~~~~~~~

Slightly modified from B. Clementson blog.