How can I solve system of linear equations in SymPy?
In addition to the great answers given by @AMiT Kumar and @Scott, SymPy 1.0 has added even further functionalities. For the underdetermined linear system of equations, I tried below and get it to work without going deeper into sympy.solvers.solveset
. That being said, do go there if curiosity leads you.
from sympy import *
x, y, z = symbols('x, y, z')
eq1 = x + y + z
eq2 = x + y + 2*z
solve([eq1-1, eq2-3], (x, y,z))
That gives me {z: 2, x: -y - 1}
.
Again, great package, SymPy developers!
import sympy as sp
x, y, z = sp.symbols('x, y, z')
eq1 = sp.Eq(x + y + z, 1) # x + y + z = 1
eq2 = sp.Eq(x + y + 2 * z, 3) # x + y + 2z = 3
ans = sp.solve((eq1, eq2), (x, y, z))
this is similar to @PaulDong answer with some minor changes
- its a good practice getting used to not using
import *
(numpy has many similar functions) - defining equations with
sp.Eq()
results in cleaner code later on
SymPy recently got a new Linear system solver: linsolve
in sympy.solvers.solveset
, you can use that as follows:
In [38]: from sympy import *
In [39]: from sympy.solvers.solveset import linsolve
In [40]: x, y, z = symbols('x, y, z')
List of Equations Form:
In [41]: linsolve([x + y + z - 1, x + y + 2*z - 3 ], (x, y, z))
Out[41]: {(-y - 1, y, 2)}
Augmented Matrix Form:
In [59]: linsolve(Matrix(([1, 1, 1, 1], [1, 1, 2, 3])), (x, y, z))
Out[59]: {(-y - 1, y, 2)}
A*x = b Form
In [59]: M = Matrix(((1, 1, 1, 1), (1, 1, 2, 3)))
In [60]: system = A, b = M[:, :-1], M[:, -1]
In [61]: linsolve(system, x, y, z)
Out[61]: {(-y - 1, y, 2)}
Note: Order of solution corresponds the order of given symbols.