How to convert an XML file to nice pandas dataframe?
You can also convert by creating a dictionary of elements and then directly converting to a data frame:
import xml.etree.ElementTree as ET
import pandas as pd
# Contents of test.xml
# <?xml version="1.0" encoding="utf-8"?> <tags> <row Id="1" TagName="bayesian" Count="4699" ExcerptPostId="20258" WikiPostId="20257" /> <row Id="2" TagName="prior" Count="598" ExcerptPostId="62158" WikiPostId="62157" /> <row Id="3" TagName="elicitation" Count="10" /> <row Id="5" TagName="open-source" Count="16" /> </tags>
root = ET.parse('test.xml').getroot()
tags = {"tags":[]}
for elem in root:
tag = {}
tag["Id"] = elem.attrib['Id']
tag["TagName"] = elem.attrib['TagName']
tag["Count"] = elem.attrib['Count']
tags["tags"]. append(tag)
df_users = pd.DataFrame(tags["tags"])
df_users.head()
Here is another way of converting a xml to pandas data frame. For example i have parsing xml from a string but this logic holds good from reading file as well.
import pandas as pd
import xml.etree.ElementTree as ET
xml_str = '<?xml version="1.0" encoding="utf-8"?>\n<response>\n <head>\n <code>\n 200\n </code>\n </head>\n <body>\n <data id="0" name="All Categories" t="2018052600" tg="1" type="category"/>\n <data id="13" name="RealEstate.com.au [H]" t="2018052600" tg="1" type="publication"/>\n </body>\n</response>'
etree = ET.fromstring(xml_str)
dfcols = ['id', 'name']
df = pd.DataFrame(columns=dfcols)
for i in etree.iter(tag='data'):
df = df.append(
pd.Series([i.get('id'), i.get('name')], index=dfcols),
ignore_index=True)
df.head()
As of v1.3, you can simply use:
pandas.read_xml(path_or_file)
You can easily use xml
(from the Python standard library) to convert to a pandas.DataFrame
. Here's what I would do (when reading from a file replace xml_data
with the name of your file or file object):
import pandas as pd
import xml.etree.ElementTree as ET
import io
def iter_docs(author):
author_attr = author.attrib
for doc in author.iter('document'):
doc_dict = author_attr.copy()
doc_dict.update(doc.attrib)
doc_dict['data'] = doc.text
yield doc_dict
xml_data = io.StringIO(u'''YOUR XML STRING HERE''')
etree = ET.parse(xml_data) #create an ElementTree object
doc_df = pd.DataFrame(list(iter_docs(etree.getroot())))
If there are multiple authors in your original document or the root of your XML is not an author
, then I would add the following generator:
def iter_author(etree):
for author in etree.iter('author'):
for row in iter_docs(author):
yield row
and change doc_df = pd.DataFrame(list(iter_docs(etree.getroot())))
to doc_df = pd.DataFrame(list(iter_author(etree)))
Have a look at the ElementTree
tutorial provided in the xml
library documentation.