Implement Parallel for loops in Python

You can also use concurrent.futures in Python 3, which is a simpler interface than multiprocessing. See this for more details about differences.

from concurrent import futures

total_error = 0

with futures.ProcessPoolExecutor() as pool:
  for error in pool.map(some_function_call, parameters1, parameters2):
    total_error += error

In this case, parameters1 and parameters2 should be a list or iterable of the same size as the number of times you want to run the function (24 times as per your example).

If paramters<1,2> are not iterables/mappable, but you just want to run the function 24 times, you can submit the jobs for the function for the required number of times, and later acquire the result using a callback.

class TotalError:
    def __init__(self):
        self.value = 0

    def __call__(self, r):
        self.value += r.result()

total_error = TotalError()
with futures.ProcessPoolExecutor() as pool:
  for i in range(24):
    future_result = pool.submit(some_function_call, parameters1, parameters2)
    future_result.add_done_callback(total_error)

print(total_error.value)

You can use python multiprocessing:

from multiprocessing import Pool, freeze_support, cpu_count
import os

all_args = [(parameters1, parameters2) for i in range(24)]

# call freeze_support() if in Windows
if os.name == "nt":
    freeze_support()

# you can use whatever, but your machine core count is usually a good choice (although maybe not the best)
pool = Pool(cpu_count()) 

def wrapped_some_function_call(args): 
    """
    we need to wrap the call to unpack the parameters 
    we build before as a tuple for being able to use pool.map
    """ 
    sume_function_call(*args) 

results = pool.map(wrapped_some_function_call, all_args)
total_error = sum(results)