Pandas join issue: columns overlap but no suffix specified
This error indicates that the two tables have one or more column names that have the same column name.
The error message translates to: "I can see the same column in both tables but you haven't told me to rename either one before bringing them into the same table"
You either want to delete one of the columns before bringing it in from the other on using del df['column name']
, or use lsuffix
to re-write the original column, or rsuffix
to rename the one that is being brought in.
df_a.join(df_b, on='mukey', how='left', lsuffix='_left', rsuffix='_right')
The error indicates that the two tables have the 1 or more column names that have the same column name.
Anyone with the same error who doesn't want to provide a suffix can rename the columns instead. Also make sure the index of both DataFrames match in type and value if you don't want to provide the on='mukey'
setting.
# rename example
df_a = df_a.rename(columns={'a_old': 'a_new', 'a2_old': 'a2_new'})
# set the index
df_a = df_a.set_index(['mukus'])
df_b = df_b.set_index(['mukus'])
df_a.join(df_b)
Your error on the snippet of data you posted is a little cryptic, in that because there are no common values, the join operation fails because the values don't overlap it requires you to supply a suffix for the left and right hand side:
In [173]:
df_a.join(df_b, on='mukey', how='left', lsuffix='_left', rsuffix='_right')
Out[173]:
mukey_left DI PI mukey_right niccdcd
index
0 100000 35 14 NaN NaN
1 1000005 44 14 NaN NaN
2 1000006 44 14 NaN NaN
3 1000007 43 13 NaN NaN
4 1000008 43 13 NaN NaN
merge
works because it doesn't have this restriction:
In [176]:
df_a.merge(df_b, on='mukey', how='left')
Out[176]:
mukey DI PI niccdcd
0 100000 35 14 NaN
1 1000005 44 14 NaN
2 1000006 44 14 NaN
3 1000007 43 13 NaN
4 1000008 43 13 NaN
The .join()
function is using the index
of the passed as argument dataset, so you should use set_index
or use .merge
function instead.
Please find the two examples that should work in your case:
join_df = LS_sgo.join(MSU_pi.set_index('mukey'), on='mukey', how='left')
or
join_df = df_a.merge(df_b, on='mukey', how='left')