Solving triangles with trigonometry
Python, 441 chars
from math import*
V=[map(float,raw_input().replace('?','0').split())+[0]]
for i in' '*9:
W=[]
for a,b,c,A,B,C,R in V:
if B and C:A=A or pi-B-C
if a:
if A:R=R or a/sin(A)
else:
if b and c:A=acos((b*b+c*c-a*a)/2/b/c)
elif R:N=asin(a/R);W+=[(b,c,a,B,C,N,R)];A=pi-N
else:a=R*sin(A)
W+=[(b,c,a,B,C,A,R)]
V=W
V=[T for T in V if all(t>0 for t in T)]
if V:
for T in V:print' '.join(map(str,T[:-1]))
else:print'No solution'
Does your typical trig to compute the answer. The current possible solutions are stored as tuples in V. Any unknown values are recorded as 0. A seventh variable R is the value a/sin(A)==b/sin(B)==c/sin(C)
.
I use a trick where the a/b/c values are cycled each iteration to avoid lots of redundant logic. The inner loop only needs to compute values of the A side or angle.
Plain C, 565 555 530 chars
C is not the best language for Code Golf, I guess, so it's just for fun.
float t[6],u[6],P=3.1415;x,w,j,k,D,E;
#define y(V) for(V=0;V<6;++V)
#define Y if(p[j]&&p[k]&&
#define A(o,s,a,b,c,A,B,C) z(float*p){y(D)y(E)if(j=D%3,k=E%3,j-k){Y c)w=C=acos((a*a+b*b-c*c)/2/a/b);if(A&&B)w=C=P-A-B;Y C)w=c=sqrt(a*a+b*b-2*a*b*cos(C));if(A&&B&&a)w=b=s(B)*a/s(A);Y A&&!B&&!C)w=B=(x=A<P/2&&a<b&&p==u,1-2*x)*(asin(b*s(A)/a)-x*P);}y(j)k=w&&(p==t||x>0)&&o("%f ",a);o("\n");}main(int l,char*q[]){y(j)sscanf(*++q,"%f",t+j),u[j]=t[j];z(t);z(u);j=w||o("No solution\n");}
A(printf,sin,p[j],p[k],p[3-j-k],p[j+3],p[k+3],p[6-j-k])
Compiled with cc -o trig trig.c -lm
. Reads input as command line args.